Zhuang Haiyang , Yang Fan , Pan Chen , Cheng Yingyao
{"title":"Seismic performances of the wrapped retaining wall backfilled with polypropylene fiber reinforced rubber-sand mixture","authors":"Zhuang Haiyang , Yang Fan , Pan Chen , Cheng Yingyao","doi":"10.1016/j.geotexmem.2024.02.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>In this study, a fiber-reinforced rubber-sand mixture (FRRSM) was produced by adding random distribution reinforcement of polypropylene<span><span> fiber recycled from waste plastic, which can strengthen the RSM. The mechanical parameters of FRRSM were tested using indoor experiments. Moreover, the </span>seismic behavior of a wrapped reinforced earth retaining wall backfilled with FRRSM was investigated using the </span></span>finite element method<span><span>. First, by comparing the model test results, the accuracy of the nonlinear finite element analysis method, which simulated the earthquake response of a retaining wall well, was verified. Subsequently, the soil used in the model test was replaced with FRRSM, and the facing displacement, vertical settlement, and acceleration response of the retaining wall were analyzed. The results indicate that the </span>seismic performance of the retaining wall was significantly enhanced with an increase in the fiber content (</span></span><em>F</em><sub>C</sub>) of the FRRSM. According to the present research, the optimal mixture ratio that can ensure the seismic performance of FRRSM-RW is 10% rubber and 1.5% fiber, that is, <em>R</em><sub>C</sub> = 10% and <em>F</em><sub>C</sub> = 1.5%.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026611442400013X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a fiber-reinforced rubber-sand mixture (FRRSM) was produced by adding random distribution reinforcement of polypropylene fiber recycled from waste plastic, which can strengthen the RSM. The mechanical parameters of FRRSM were tested using indoor experiments. Moreover, the seismic behavior of a wrapped reinforced earth retaining wall backfilled with FRRSM was investigated using the finite element method. First, by comparing the model test results, the accuracy of the nonlinear finite element analysis method, which simulated the earthquake response of a retaining wall well, was verified. Subsequently, the soil used in the model test was replaced with FRRSM, and the facing displacement, vertical settlement, and acceleration response of the retaining wall were analyzed. The results indicate that the seismic performance of the retaining wall was significantly enhanced with an increase in the fiber content (FC) of the FRRSM. According to the present research, the optimal mixture ratio that can ensure the seismic performance of FRRSM-RW is 10% rubber and 1.5% fiber, that is, RC = 10% and FC = 1.5%.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.