Sylvain Poinard , Alice Ganeau , Maxime Lafond , Oliver Dorado , Stefan Catheline , Cyril Lafon , Florent Aptel , Gilles Thuret , Philippe Gain
{"title":"Ultrasound Applications in Ophthalmology: A Review","authors":"Sylvain Poinard , Alice Ganeau , Maxime Lafond , Oliver Dorado , Stefan Catheline , Cyril Lafon , Florent Aptel , Gilles Thuret , Philippe Gain","doi":"10.1016/j.irbm.2024.100828","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrasound is a powerful tool in ophthalmology with a wide range of physical effects that can interact with biological tissue. This ranges from low-intensity linear transducers for diagnosis to high-intensity pulsed or continuous focused ultrasound for therapy. Designing devices for ophthalmological applications requires creating fine focal spots, minimizing heating, and accounting for eye movements. Ultrasound is essential for ophthalmologists to provide accurate diagnosis and quantitative information on tissue composition and blood flow. Ultrasound has revolutionized cataract surgery, making it less invasive and in an outpatient basis, while enhancing the safety and predictability of glaucoma treatment using high-intensity focused ultrasound. The article aims to review the complex and multifaceted bioeffects of ultrasound used in ophthalmology, and its current and future applications of ultrasound in ophthalmology, notably regarding cavitation-mediated drug delivery.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"45 2","pages":"Article 100828"},"PeriodicalIF":5.6000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irbm","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1959031824000095","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasound is a powerful tool in ophthalmology with a wide range of physical effects that can interact with biological tissue. This ranges from low-intensity linear transducers for diagnosis to high-intensity pulsed or continuous focused ultrasound for therapy. Designing devices for ophthalmological applications requires creating fine focal spots, minimizing heating, and accounting for eye movements. Ultrasound is essential for ophthalmologists to provide accurate diagnosis and quantitative information on tissue composition and blood flow. Ultrasound has revolutionized cataract surgery, making it less invasive and in an outpatient basis, while enhancing the safety and predictability of glaucoma treatment using high-intensity focused ultrasound. The article aims to review the complex and multifaceted bioeffects of ultrasound used in ophthalmology, and its current and future applications of ultrasound in ophthalmology, notably regarding cavitation-mediated drug delivery.
期刊介绍:
IRBM is the journal of the AGBM (Alliance for engineering in Biology an Medicine / Alliance pour le génie biologique et médical) and the SFGBM (BioMedical Engineering French Society / Société française de génie biologique médical) and the AFIB (French Association of Biomedical Engineers / Association française des ingénieurs biomédicaux).
As a vehicle of information and knowledge in the field of biomedical technologies, IRBM is devoted to fundamental as well as clinical research. Biomedical engineering and use of new technologies are the cornerstones of IRBM, providing authors and users with the latest information. Its six issues per year propose reviews (state-of-the-art and current knowledge), original articles directed at fundamental research and articles focusing on biomedical engineering. All articles are submitted to peer reviewers acting as guarantors for IRBM''s scientific and medical content. The field covered by IRBM includes all the discipline of Biomedical engineering. Thereby, the type of papers published include those that cover the technological and methodological development in:
-Physiological and Biological Signal processing (EEG, MEG, ECG…)-
Medical Image processing-
Biomechanics-
Biomaterials-
Medical Physics-
Biophysics-
Physiological and Biological Sensors-
Information technologies in healthcare-
Disability research-
Computational physiology-
…