UAV-assisted MEC offloading strategy with peak AOI boundary optimization: A method based on DDQN

IF 7.5 2区 计算机科学 Q1 TELECOMMUNICATIONS
Zhixiong Chen , Jiawei Yang , Zhenyu Zhou
{"title":"UAV-assisted MEC offloading strategy with peak AOI boundary optimization: A method based on DDQN","authors":"Zhixiong Chen ,&nbsp;Jiawei Yang ,&nbsp;Zhenyu Zhou","doi":"10.1016/j.dcan.2024.01.003","DOIUrl":null,"url":null,"abstract":"<div><div>In response to the requirements for large-scale device access and ultra-reliable and low-latency communication in the power internet of things, unmanned aerial vehicle-assisted multi-access edge computing can be used to realize flexible access to power services and update large amounts of information in a timely manner. By considering factors such as machine communication traffic, MAC competition access, and information freshness, this paper develops a cross-layer computing framework in which the peak Age of Information (AoI) provides a statistical delay boundary in the finite blocklength regime. We also propose a deep machine learning-based multi-access edge computing offloading algorithm. First, a traffic arrival model is established in which the time interval follows the Beta distribution, and then a business service model is proposed based on the carrier sense multiple access with collision avoidance algorithm. The peak AoI boundary performance of multiple access is evaluated according to stochastic network calculus theory. Finally, an unmanned aerial vehicle-assisted multi-level offloading model with cache is designed, in which the peak AoI violation probability and energy consumption provide the optimization goals. The optimal offloading strategy is obtained using deep reinforcement learning. Compared with baseline schemes based on non-cooperative game theory with stochastic learning automata and random edge unloading, the proposed algorithm improves the overall performance by approximately 3.52 % and 20.73 %, respectively, and provides superior deterministic offloading performance by using the peak AoI boundary.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"10 6","pages":"Pages 1790-1803"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864824000154","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In response to the requirements for large-scale device access and ultra-reliable and low-latency communication in the power internet of things, unmanned aerial vehicle-assisted multi-access edge computing can be used to realize flexible access to power services and update large amounts of information in a timely manner. By considering factors such as machine communication traffic, MAC competition access, and information freshness, this paper develops a cross-layer computing framework in which the peak Age of Information (AoI) provides a statistical delay boundary in the finite blocklength regime. We also propose a deep machine learning-based multi-access edge computing offloading algorithm. First, a traffic arrival model is established in which the time interval follows the Beta distribution, and then a business service model is proposed based on the carrier sense multiple access with collision avoidance algorithm. The peak AoI boundary performance of multiple access is evaluated according to stochastic network calculus theory. Finally, an unmanned aerial vehicle-assisted multi-level offloading model with cache is designed, in which the peak AoI violation probability and energy consumption provide the optimization goals. The optimal offloading strategy is obtained using deep reinforcement learning. Compared with baseline schemes based on non-cooperative game theory with stochastic learning automata and random edge unloading, the proposed algorithm improves the overall performance by approximately 3.52 % and 20.73 %, respectively, and provides superior deterministic offloading performance by using the peak AoI boundary.
采用峰值 AOI 边界优化的无人机辅助 MEC 卸载策略:基于 DDQN 的方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Digital Communications and Networks
Digital Communications and Networks Computer Science-Hardware and Architecture
CiteScore
12.80
自引率
5.10%
发文量
915
审稿时长
30 weeks
期刊介绍: Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus. In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field. In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信