Integration of jackfruit seed-derived carbon dots and electronic nose for a sensitive detection of formaldehyde vapor

IF 0.7 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Thitarat Prathumsuwan, S. Kladsomboon, Alfred Antony Christy, Insik In, Xiao Liang, Shufeng Song, Yao Wang, Thitirat Inprasit, P. Paoprasert, Natee Sirisit
{"title":"Integration of jackfruit seed-derived carbon dots and electronic nose for a sensitive detection of formaldehyde vapor","authors":"Thitarat Prathumsuwan, S. Kladsomboon, Alfred Antony Christy, Insik In, Xiao Liang, Shufeng Song, Yao Wang, Thitirat Inprasit, P. Paoprasert, Natee Sirisit","doi":"10.55713/jmmm.v34i1.1846","DOIUrl":null,"url":null,"abstract":"The preparation of carbon dots from jackfruit seeds through a pyrolysis method at 280℃ and their use for the detection of formaldehyde were reported. The as-prepared carbon dots showed a high fluorescence efficiency with a quantum yield of 12.7% and excellent photostability and dispersibility in aqueous solution with a zeta potential of ‒62.5 mV. The integration of carbon dot thin film and a home-made optical electronic nose system possessed sensitivity towards formaldehyde vapor with a detection limit of 24.7%v/v across a linear range of 25%v/v to 100%v/v. Furthermore, the sensor showed the highest sensitivity towards formaldehyde against other volatile organic compounds through a strong interaction between the carbonyl groups and the carbon dots. Additionally, principal component analysis (PCA) was conducted to achieve quantitative measurements of formaldehyde content in different formaldehyde volume ratios with substantial variance. Due to the significance of methanol as a typical chemical precursor for the industrial manufacturing of formaldehyde, the quantitative analytical method is essential to determining formaldehyde or methanol concentration. The sensing ability of carbon dot film-integrated electronic nose towards formaldehyde in formaldehyde/methanol mixtures was measured to be 10.74%v/v in a linear range of 25%v/v to 100%v/v. The PCA showed orderly linear combinations of the data set, which can be potentially utilized to analyze formaldehyde and methanol content in industrial processes. The results indicate the significant potential of carbon dots and optical electronic nose system as an effective formaldehyde sensing platform. Potential applications include the quantification of formaldehyde from methanol conversion and determination of methanol contaminant in formaldehyde.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v34i1.1846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The preparation of carbon dots from jackfruit seeds through a pyrolysis method at 280℃ and their use for the detection of formaldehyde were reported. The as-prepared carbon dots showed a high fluorescence efficiency with a quantum yield of 12.7% and excellent photostability and dispersibility in aqueous solution with a zeta potential of ‒62.5 mV. The integration of carbon dot thin film and a home-made optical electronic nose system possessed sensitivity towards formaldehyde vapor with a detection limit of 24.7%v/v across a linear range of 25%v/v to 100%v/v. Furthermore, the sensor showed the highest sensitivity towards formaldehyde against other volatile organic compounds through a strong interaction between the carbonyl groups and the carbon dots. Additionally, principal component analysis (PCA) was conducted to achieve quantitative measurements of formaldehyde content in different formaldehyde volume ratios with substantial variance. Due to the significance of methanol as a typical chemical precursor for the industrial manufacturing of formaldehyde, the quantitative analytical method is essential to determining formaldehyde or methanol concentration. The sensing ability of carbon dot film-integrated electronic nose towards formaldehyde in formaldehyde/methanol mixtures was measured to be 10.74%v/v in a linear range of 25%v/v to 100%v/v. The PCA showed orderly linear combinations of the data set, which can be potentially utilized to analyze formaldehyde and methanol content in industrial processes. The results indicate the significant potential of carbon dots and optical electronic nose system as an effective formaldehyde sensing platform. Potential applications include the quantification of formaldehyde from methanol conversion and determination of methanol contaminant in formaldehyde.
将源自菠萝籽的碳点与电子鼻相结合,实现对甲醛蒸气的灵敏检测
报告了通过 280℃ 高温分解法从菠萝籽中制备碳点及其在甲醛检测中的应用。所制备的碳点具有较高的荧光效率(量子产率为 12.7%)、优异的光稳定性以及在水溶液中的分散性(zeta 电位为 -62.5 mV)。碳点薄膜与自制的光学电子鼻系统集成后,对甲醛蒸气具有灵敏度,在 25%v/v 至 100%v/v 的线性范围内,检测限为 24.7%v/v。此外,通过羰基与碳点之间的强烈相互作用,该传感器对甲醛的灵敏度最高,而对其他挥发性有机化合物的灵敏度则较低。此外,还进行了主成分分析 (PCA),以实现对不同甲醛体积比中甲醛含量的定量测量,且差异很大。由于甲醇是工业制造甲醛的典型化学前体,因此定量分析方法对于确定甲醛或甲醇浓度至关重要。在 25%v/v 至 100%v/v 的线性范围内,测得碳点薄膜集成电子鼻对甲醛/甲醇混合物中甲醛的感应能力为 10.74%v/v。PCA 显示了数据集的有序线性组合,可用于分析工业流程中的甲醛和甲醇含量。结果表明,碳点和光学电子鼻系统作为有效的甲醛传感平台具有巨大的潜力。潜在的应用包括甲醇转化产生的甲醛定量和甲醛中甲醇污染物的测定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of metals, materials and minerals
Journal of metals, materials and minerals MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
11.10%
发文量
0
期刊介绍: Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信