Isabel Jia Yen Tan , Adrian Chun Minh Loy , Bridgid Lai Fui Chin , Kin Wai Cheah , Sin Yong Teng , Bing Shen How , Hatem Alhazmi , Wei Dong Leong , Huei Yeong Lim , Man Kee Lam , Su Shiung Lam
{"title":"Co-pyrolysis of Chlorella vulgaris with plastic wastes: Thermal degradation, kinetics and Progressive Depth Swarm-Evolution (PDSE) neural network-based optimization","authors":"Isabel Jia Yen Tan , Adrian Chun Minh Loy , Bridgid Lai Fui Chin , Kin Wai Cheah , Sin Yong Teng , Bing Shen How , Hatem Alhazmi , Wei Dong Leong , Huei Yeong Lim , Man Kee Lam , Su Shiung Lam","doi":"10.1016/j.grets.2024.100077","DOIUrl":null,"url":null,"abstract":"<div><p>The search of sustainable route for biofuel production from renewable biomass have garnered wide interest to seek for various routes without compromising the environment. Co-pyrolysis emerges as a promising thermochemical route that can improve the pyrolysis output from simultaneously processing more than two feedstocks in an inert atmosphere. This paper focuses on the kinetic modeling and neuro-evolution optimization in the application of catalytic co-pyrolysis of microalgae and plastic waste using HZSM-5 supported on limestone (HZSM-5/LS), in which co-pyrolysis of binary mixture of microalgae and plastic wastes (i.e. High-Density Polyethylene and Low-Density Polyethylene) was investigated over different heating rates. The results have shown a positive synergistic effect between the microalgae and polyethylene in which the apparent activation energies values have reduced significantly (<span><math><mo>∼</mo></math></span>20 kJ/mol) compared to that obtained by pyrolysis of individual microalgae component. The kinetic models reflect that the mixture of microalgae and Low-Density Polyethylene for use as co-pyrolysis feedstock requires activation energy that is 23% and 13% lower compared to that required by pure microalgae and the mixture of microalgae and High-Density Polyethylene, respectively. The Progressive Depth Swarm-Evolution (PDSE) was used for neural architecture search, which subsequently provided optimal reaction condition at 873 K can achieve 99.6 % of degradation rate using a tri-combination of LDPE (0.13 %) + HDPE (0.77 %) + MA (0.11 %) in the presence of HZSM-5/LS catalyst.</p></div>","PeriodicalId":100598,"journal":{"name":"Green Technologies and Sustainability","volume":"2 2","pages":"Article 100077"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949736124000046/pdfft?md5=1d8dfe616428a16c738e4756079c77ff&pid=1-s2.0-S2949736124000046-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Technologies and Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949736124000046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The search of sustainable route for biofuel production from renewable biomass have garnered wide interest to seek for various routes without compromising the environment. Co-pyrolysis emerges as a promising thermochemical route that can improve the pyrolysis output from simultaneously processing more than two feedstocks in an inert atmosphere. This paper focuses on the kinetic modeling and neuro-evolution optimization in the application of catalytic co-pyrolysis of microalgae and plastic waste using HZSM-5 supported on limestone (HZSM-5/LS), in which co-pyrolysis of binary mixture of microalgae and plastic wastes (i.e. High-Density Polyethylene and Low-Density Polyethylene) was investigated over different heating rates. The results have shown a positive synergistic effect between the microalgae and polyethylene in which the apparent activation energies values have reduced significantly (20 kJ/mol) compared to that obtained by pyrolysis of individual microalgae component. The kinetic models reflect that the mixture of microalgae and Low-Density Polyethylene for use as co-pyrolysis feedstock requires activation energy that is 23% and 13% lower compared to that required by pure microalgae and the mixture of microalgae and High-Density Polyethylene, respectively. The Progressive Depth Swarm-Evolution (PDSE) was used for neural architecture search, which subsequently provided optimal reaction condition at 873 K can achieve 99.6 % of degradation rate using a tri-combination of LDPE (0.13 %) + HDPE (0.77 %) + MA (0.11 %) in the presence of HZSM-5/LS catalyst.