{"title":"Розробка нових термобарʼєрних покриттів для аерокосмічної техніки","authors":"Вячеслав Сироватка","doi":"10.46299/j.isjea.20240301.04","DOIUrl":null,"url":null,"abstract":"проведені термоциклічні випробування плазмових покриттів з диоксиду цирконію. Вихідні порошки були отримані двома методами: кріохімічним та сумісним осадженням гідрооксидів з подальшою сушкою осаду на повітрі. Встановлено, що у випадку покриття з кріохімічного порошку, яке має більш тонкішу структуру та малу пористість, формується більш тонкий шар термозрастаючого оксиду, чим для покриття з комерційного порошку ЦИ-7(ZrO2+7%Y2O3). Це спонукає підвищенню ресурсу роботи термобарʼєного покриття. Склад сплаву на границі сплав-окалина визначається відносною швидкістю дифузійних процесів у сплаві та зовнішньому керамічному шарі. Дифузія кисню здійснюється по границях зерен та в інших дефектних ділянках керамічного шару та металічної основи. У зв’язку з цим, необхідно наголосити, що структура шару, напиленого плазмовим методом, має специфічні дефекти у вигляді різного роду несуцільностей (пор, порожнин і т.д.), наявність яких призводить до проходження в матеріал газоподібного кисню. За таких умов проходить переважно формування оксиду алюмінію (Al2O3), щільність дисоціації якого значно нижча, ніж оксиду титану. Встановлено, що мікролегування γ-алюмінідів титану скандієм забезпечується їх жаростійкості, рафінування та модифікування структури із когерентним зв’язком між зміцнюючою та матричними фазами. Введення в покриття скандію дозволяє змінювати відношення термодинамічних активностей алюмінію та титану у бік утворення оксиду алюмінію (Al2O3) на поверхні сплаву при окислені завдяки розкислюючій дії скандію та утворенню дисперсних оксидних включень (оксидів скандію, наприклад, Sc2O3).","PeriodicalId":120311,"journal":{"name":"International Science Journal of Engineering & Agriculture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Science Journal of Engineering & Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46299/j.isjea.20240301.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
проведені термоциклічні випробування плазмових покриттів з диоксиду цирконію. Вихідні порошки були отримані двома методами: кріохімічним та сумісним осадженням гідрооксидів з подальшою сушкою осаду на повітрі. Встановлено, що у випадку покриття з кріохімічного порошку, яке має більш тонкішу структуру та малу пористість, формується більш тонкий шар термозрастаючого оксиду, чим для покриття з комерційного порошку ЦИ-7(ZrO2+7%Y2O3). Це спонукає підвищенню ресурсу роботи термобарʼєного покриття. Склад сплаву на границі сплав-окалина визначається відносною швидкістю дифузійних процесів у сплаві та зовнішньому керамічному шарі. Дифузія кисню здійснюється по границях зерен та в інших дефектних ділянках керамічного шару та металічної основи. У зв’язку з цим, необхідно наголосити, що структура шару, напиленого плазмовим методом, має специфічні дефекти у вигляді різного роду несуцільностей (пор, порожнин і т.д.), наявність яких призводить до проходження в матеріал газоподібного кисню. За таких умов проходить переважно формування оксиду алюмінію (Al2O3), щільність дисоціації якого значно нижча, ніж оксиду титану. Встановлено, що мікролегування γ-алюмінідів титану скандієм забезпечується їх жаростійкості, рафінування та модифікування структури із когерентним зв’язком між зміцнюючою та матричними фазами. Введення в покриття скандію дозволяє змінювати відношення термодинамічних активностей алюмінію та титану у бік утворення оксиду алюмінію (Al2O3) на поверхні сплаву при окислені завдяки розкислюючій дії скандію та утворенню дисперсних оксидних включень (оксидів скандію, наприклад, Sc2O3).