Optimizing the Future: Unveiling the Significance of MLOps in Streamlining the Machine Learning Lifecycle

Gorantla Prasanna
{"title":"Optimizing the Future: Unveiling the Significance of MLOps in Streamlining the Machine Learning Lifecycle","authors":"Gorantla Prasanna","doi":"10.59256/ijsreat.20240401002","DOIUrl":null,"url":null,"abstract":"As we stand on the precipice of 2024, the technological landscape is abuzz with the convergence of two revolutionary forces: MLOps (Machine Learning Operations) and Generative AI. This potent cocktail promises to reshape the very fabric of artificial intelligence (AI), ushering in a new era of streamlined workflows, boundless innovation, and redefined value delivery. MLOps, a paradigm shift inspired by DevOps principles, emerges as the knight in shining armor, poised to vanquish the challenges plaguing the machine learning lifecycle. By fostering seamless collaboration, agile deployment, vigilant monitoring, and efficient management of models, MLOps lays the groundwork for robust organizational AI strategies. In this paper, we delve deep into the intricate world of MLOps, exploring its genesis, its potential to revolutionize business operations, and its pivotal role in shaping the future of AI. Keywords: MLOps, Machine Learning, Artificial Intelligence, DevOps, Automation, Collaboration, Deployment, Monitoring, Management, Generative AI, Innovation, Value Delivery, Business Optimization.","PeriodicalId":310227,"journal":{"name":"International Journal Of Scientific Research In Engineering & Technology","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal Of Scientific Research In Engineering & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59256/ijsreat.20240401002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As we stand on the precipice of 2024, the technological landscape is abuzz with the convergence of two revolutionary forces: MLOps (Machine Learning Operations) and Generative AI. This potent cocktail promises to reshape the very fabric of artificial intelligence (AI), ushering in a new era of streamlined workflows, boundless innovation, and redefined value delivery. MLOps, a paradigm shift inspired by DevOps principles, emerges as the knight in shining armor, poised to vanquish the challenges plaguing the machine learning lifecycle. By fostering seamless collaboration, agile deployment, vigilant monitoring, and efficient management of models, MLOps lays the groundwork for robust organizational AI strategies. In this paper, we delve deep into the intricate world of MLOps, exploring its genesis, its potential to revolutionize business operations, and its pivotal role in shaping the future of AI. Keywords: MLOps, Machine Learning, Artificial Intelligence, DevOps, Automation, Collaboration, Deployment, Monitoring, Management, Generative AI, Innovation, Value Delivery, Business Optimization.
优化未来:揭示 MLOps 在简化机器学习生命周期中的重要意义
当我们站在 2024 年的悬崖边上时,技术领域正充斥着两股革命性力量的交汇:MLOps(机器学习操作)和生成式人工智能。这杯烈性鸡尾酒有望重塑人工智能(AI)的结构,开创一个简化工作流程、无限创新和重新定义价值交付的新时代。MLOps 是受 DevOps 原则启发而产生的一种范式转变,它是身披闪亮盔甲的骑士,随时准备战胜困扰机器学习生命周期的各种挑战。通过促进无缝协作、敏捷部署、警惕监控和模型的高效管理,MLOps 为强大的组织人工智能战略奠定了基础。在本文中,我们将深入探讨 MLOps 的复杂世界,探索其起源、彻底改变业务运营的潜力及其在塑造人工智能未来中的关键作用。关键词MLOps、机器学习、人工智能、DevOps、自动化、协作、部署、监控、管理、生成式人工智能、创新、价值交付、业务优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信