A single micro-LED manipulation system based on micro-gripper

Jie Bai, Pingjuan Niu, Erdan Gu, Jianming Li, Clarence Augustine TH Tee
{"title":"A single micro-LED manipulation system based on micro-gripper","authors":"Jie Bai, Pingjuan Niu, Erdan Gu, Jianming Li, Clarence Augustine TH Tee","doi":"10.1063/10.0024319","DOIUrl":null,"url":null,"abstract":"Micro-LEDs (μLEDs) have advantages in terms of brightness, power consumption, and response speed. In addition, they can also be used as micro-sensors implanted in the body via flexible electronic skin. One of the key techniques involved in the fabrication of μLED-based devices is transfer printing. Although numerous methods have been proposed for transfer printing, improving the yield of μLED arrays is still a formidable task. In this paper, we propose a novel method for improving the yield of μLED arrays transferred by the stamping method, using an innovative design of piezoelectrically driven asymmetric micro-gripper. Traditional grippers are too large to manipulate μLEDs, and therefore two micro-sized cantilevers are added at the gripper tips. A μLED manipulation system is constructed based on the micro-gripper together with a three-dimensional positioning system. Experimental results using this system show that it can be used successfully to manipulate μLED arrays.","PeriodicalId":87330,"journal":{"name":"Nanotechnology and Precision Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology and Precision Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/10.0024319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Micro-LEDs (μLEDs) have advantages in terms of brightness, power consumption, and response speed. In addition, they can also be used as micro-sensors implanted in the body via flexible electronic skin. One of the key techniques involved in the fabrication of μLED-based devices is transfer printing. Although numerous methods have been proposed for transfer printing, improving the yield of μLED arrays is still a formidable task. In this paper, we propose a novel method for improving the yield of μLED arrays transferred by the stamping method, using an innovative design of piezoelectrically driven asymmetric micro-gripper. Traditional grippers are too large to manipulate μLEDs, and therefore two micro-sized cantilevers are added at the gripper tips. A μLED manipulation system is constructed based on the micro-gripper together with a three-dimensional positioning system. Experimental results using this system show that it can be used successfully to manipulate μLED arrays.
基于微型夹具的单个微型 LED 操作系统
微型 LED(μLED)在亮度、功耗和响应速度方面都具有优势。此外,它们还可用作通过柔性电子皮肤植入人体的微型传感器。转印技术是制造基于μLED器件的关键技术之一。虽然转移印花的方法层出不穷,但提高μLED阵列的成品率仍是一项艰巨的任务。在本文中,我们提出了一种新方法,利用创新设计的压电驱动非对称微型夹具,提高通过冲压方法转移的 μLED 阵列的成品率。传统的抓手太大,无法操纵微型 LED,因此在抓手顶端增加了两个微型悬臂。基于微型机械手和三维定位系统,我们构建了一个 μLED 操作系统。使用该系统的实验结果表明,它可以成功地操纵微型 LED 阵列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信