Pesigrihastamadya Normakristagaluh, Geert J. Laanstra, Luuk J. Spreeuwers, Raymond N. J. Veldhuis
{"title":"The Impact of Illumination on Finger Vascular Pattern Recognition","authors":"Pesigrihastamadya Normakristagaluh, Geert J. Laanstra, Luuk J. Spreeuwers, Raymond N. J. Veldhuis","doi":"10.1049/2024/4413655","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This paper studies the impact of illumination direction and bundle width on finger vascular pattern imaging and recognition performance. A qualitative theoretical model is presented to explain the projection of finger blood vessels on the skin. A series of experiments were conducted using a scanner of our design with illumination from the top, a single-direction side (left or right), and narrow or wide beams. A new dataset was collected for the experiments, containing 4,428 NIR images of finger vein patterns captured under well-controlled conditions to minimize position and rotation angle differences between different sessions. Top illumination performs well because of more homogenous, which enhances a larger number of visible veins. Narrower bundles of light do not affect which veins are visible, but they reduce the overexposure at finger boundaries and increase the quality of vascular pattern images. The narrow beam achieves the best performance with 0% of [email protected]%, and the wide beam consistently results in a higher false nonmatch rate. The comparison of left- and right-side illumination has the highest error rates because only the veins in the middle of the finger are visible in both images. Different directional illumination may be interoperable since they produce the same vascular pattern and principally are the projected shadows on the finger surface. Score and image fusion for right- and left-side result in recognition performance similar to that obtained with top illumination, indicating the vein patterns are independent of illumination direction. All results of these experiments support the proposed model.</p>\n </div>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"2024 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/4413655","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/4413655","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the impact of illumination direction and bundle width on finger vascular pattern imaging and recognition performance. A qualitative theoretical model is presented to explain the projection of finger blood vessels on the skin. A series of experiments were conducted using a scanner of our design with illumination from the top, a single-direction side (left or right), and narrow or wide beams. A new dataset was collected for the experiments, containing 4,428 NIR images of finger vein patterns captured under well-controlled conditions to minimize position and rotation angle differences between different sessions. Top illumination performs well because of more homogenous, which enhances a larger number of visible veins. Narrower bundles of light do not affect which veins are visible, but they reduce the overexposure at finger boundaries and increase the quality of vascular pattern images. The narrow beam achieves the best performance with 0% of [email protected]%, and the wide beam consistently results in a higher false nonmatch rate. The comparison of left- and right-side illumination has the highest error rates because only the veins in the middle of the finger are visible in both images. Different directional illumination may be interoperable since they produce the same vascular pattern and principally are the projected shadows on the finger surface. Score and image fusion for right- and left-side result in recognition performance similar to that obtained with top illumination, indicating the vein patterns are independent of illumination direction. All results of these experiments support the proposed model.
IET BiometricsCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍:
The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding.
The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies:
Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.)
Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches
Soft biometrics and information fusion for identification, verification and trait prediction
Human factors and the human-computer interface issues for biometric systems, exception handling strategies
Template construction and template management, ageing factors and their impact on biometric systems
Usability and user-oriented design, psychological and physiological principles and system integration
Sensors and sensor technologies for biometric processing
Database technologies to support biometric systems
Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation
Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection
Biometric cryptosystems, security and biometrics-linked encryption
Links with forensic processing and cross-disciplinary commonalities
Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated
Applications and application-led considerations
Position papers on technology or on the industrial context of biometric system development
Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions
Relevant ethical and social issues