Chang Chen, Guoyu Yang, Zhihao Li, Fuan Xiao, Qi Chen, Jin Li
{"title":"Privacy-Preserving Multi-Party Cross-Chain Transaction Protocols","authors":"Chang Chen, Guoyu Yang, Zhihao Li, Fuan Xiao, Qi Chen, Jin Li","doi":"10.3390/cryptography8010006","DOIUrl":null,"url":null,"abstract":"Cross-chain transaction technologies have greatly promoted the scalability of cryptocurrencies, which then facilitates the development of Metaverse applications. However, existing solutions rely heavily on centralized middleware (notary) or smart contracts. These schemes lack privacy considerations, and users’ cross-chain transactions are easy to master by other parties. Some signature-based payment schemes have good privacy but do not support multi-party cross-chain protocols or rely heavily on some time assumptions. The uncertainty of user behavior makes it difficult to design a secure multi-party cross-chain protocol. To solve these problems, we investigate how to design a secure multi-party cross-chain transaction protocol with offline tolerance. We propose a new signature algorithm called the pre-adaptor signature scheme, an extension of the adaptor signature scheme. The pre-adaptor signature scheme combines the multi-signature and adaptor signature schemes, which can realize the secret transmission channel between multiple parties. To provide offline tolerance, we encode our protocol into the P2SH script. Our protocol provides better privacy due to no dependence on smart contracts. The performance evaluation was conducted with ten participants. For each participant of our cross-chain protocol, the initialization and execution process can be performed in 3 milliseconds and with 6 k bytes of communication overhead at most. The cost increases linearly with the increase in the number of participants.","PeriodicalId":36072,"journal":{"name":"Cryptography","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryptography8010006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Cross-chain transaction technologies have greatly promoted the scalability of cryptocurrencies, which then facilitates the development of Metaverse applications. However, existing solutions rely heavily on centralized middleware (notary) or smart contracts. These schemes lack privacy considerations, and users’ cross-chain transactions are easy to master by other parties. Some signature-based payment schemes have good privacy but do not support multi-party cross-chain protocols or rely heavily on some time assumptions. The uncertainty of user behavior makes it difficult to design a secure multi-party cross-chain protocol. To solve these problems, we investigate how to design a secure multi-party cross-chain transaction protocol with offline tolerance. We propose a new signature algorithm called the pre-adaptor signature scheme, an extension of the adaptor signature scheme. The pre-adaptor signature scheme combines the multi-signature and adaptor signature schemes, which can realize the secret transmission channel between multiple parties. To provide offline tolerance, we encode our protocol into the P2SH script. Our protocol provides better privacy due to no dependence on smart contracts. The performance evaluation was conducted with ten participants. For each participant of our cross-chain protocol, the initialization and execution process can be performed in 3 milliseconds and with 6 k bytes of communication overhead at most. The cost increases linearly with the increase in the number of participants.