Robust Soliton Distribution-Based Zero-Watermarking for Semi-Structured Power Data

Lei Zhao, Yunfeng Zou, Chao Xu, Yulong Ma, Wen Shen, Qiuhong Shan, Shuai Jiang, Yue Yu, Yihan Cai, Yubo Song, Yu Jiang
{"title":"Robust Soliton Distribution-Based Zero-Watermarking for Semi-Structured Power Data","authors":"Lei Zhao, Yunfeng Zou, Chao Xu, Yulong Ma, Wen Shen, Qiuhong Shan, Shuai Jiang, Yue Yu, Yihan Cai, Yubo Song, Yu Jiang","doi":"10.3390/electronics13030655","DOIUrl":null,"url":null,"abstract":"To ensure the security of online-shared power data, this paper adopts a robust soliton distribution-based zero-watermarking approach for tracing semi-structured power data. The method involves extracting partial key-value pairs to generate a feature sequence, processing the watermark into an equivalent number of blocks. Robust soliton distribution from erasure codes and redundant error correction codes is utilized to generate an intermediate sequence. Subsequently, the error-corrected watermark information is embedded into the feature sequence, creating a zero-watermark for semi-structured power data. In the tracking process, the extraction and analysis of the robust zero-watermark associated with the tracked data facilitate the effective identification and localization of data anomalies. Experimental and simulation validation demonstrates that this method, while ensuring data security, achieves a zero-watermark extraction success rate exceeding 98%. The proposed approach holds significant application value for data monitoring and anomaly tracking in power systems.","PeriodicalId":504598,"journal":{"name":"Electronics","volume":"2000 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electronics13030655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To ensure the security of online-shared power data, this paper adopts a robust soliton distribution-based zero-watermarking approach for tracing semi-structured power data. The method involves extracting partial key-value pairs to generate a feature sequence, processing the watermark into an equivalent number of blocks. Robust soliton distribution from erasure codes and redundant error correction codes is utilized to generate an intermediate sequence. Subsequently, the error-corrected watermark information is embedded into the feature sequence, creating a zero-watermark for semi-structured power data. In the tracking process, the extraction and analysis of the robust zero-watermark associated with the tracked data facilitate the effective identification and localization of data anomalies. Experimental and simulation validation demonstrates that this method, while ensuring data security, achieves a zero-watermark extraction success rate exceeding 98%. The proposed approach holds significant application value for data monitoring and anomaly tracking in power systems.
基于稳健孤子分布的半结构化电力数据零水印技术
为确保在线共享电力数据的安全性,本文采用了一种基于孤子分布的鲁棒零水印方法来追踪半结构化电力数据。该方法包括提取部分键值对生成特征序列,将水印处理为等量的块。利用擦除码和冗余纠错码的稳健孤子分布生成中间序列。随后,纠错水印信息被嵌入特征序列,为半结构化电力数据创建零水印。在跟踪过程中,提取和分析与跟踪数据相关的稳健零水印有助于有效识别和定位数据异常。实验和模拟验证表明,该方法在确保数据安全的同时,零水印提取成功率超过 98%。所提出的方法在电力系统的数据监控和异常跟踪方面具有重要的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信