{"title":"Robust Soliton Distribution-Based Zero-Watermarking for Semi-Structured Power Data","authors":"Lei Zhao, Yunfeng Zou, Chao Xu, Yulong Ma, Wen Shen, Qiuhong Shan, Shuai Jiang, Yue Yu, Yihan Cai, Yubo Song, Yu Jiang","doi":"10.3390/electronics13030655","DOIUrl":null,"url":null,"abstract":"To ensure the security of online-shared power data, this paper adopts a robust soliton distribution-based zero-watermarking approach for tracing semi-structured power data. The method involves extracting partial key-value pairs to generate a feature sequence, processing the watermark into an equivalent number of blocks. Robust soliton distribution from erasure codes and redundant error correction codes is utilized to generate an intermediate sequence. Subsequently, the error-corrected watermark information is embedded into the feature sequence, creating a zero-watermark for semi-structured power data. In the tracking process, the extraction and analysis of the robust zero-watermark associated with the tracked data facilitate the effective identification and localization of data anomalies. Experimental and simulation validation demonstrates that this method, while ensuring data security, achieves a zero-watermark extraction success rate exceeding 98%. The proposed approach holds significant application value for data monitoring and anomaly tracking in power systems.","PeriodicalId":504598,"journal":{"name":"Electronics","volume":"2000 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electronics13030655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To ensure the security of online-shared power data, this paper adopts a robust soliton distribution-based zero-watermarking approach for tracing semi-structured power data. The method involves extracting partial key-value pairs to generate a feature sequence, processing the watermark into an equivalent number of blocks. Robust soliton distribution from erasure codes and redundant error correction codes is utilized to generate an intermediate sequence. Subsequently, the error-corrected watermark information is embedded into the feature sequence, creating a zero-watermark for semi-structured power data. In the tracking process, the extraction and analysis of the robust zero-watermark associated with the tracked data facilitate the effective identification and localization of data anomalies. Experimental and simulation validation demonstrates that this method, while ensuring data security, achieves a zero-watermark extraction success rate exceeding 98%. The proposed approach holds significant application value for data monitoring and anomaly tracking in power systems.