EFFICIENT SYNTHESIS OF ZNO AS AN ELECTRODE OF PIEZOELECTRIC NANOGENERATORS

Ribar A. Salh, M. A. Ibrahem
{"title":"EFFICIENT SYNTHESIS OF ZNO AS AN ELECTRODE OF PIEZOELECTRIC NANOGENERATORS","authors":"Ribar A. Salh, M. A. Ibrahem","doi":"10.25271/sjuoz.2024.12.1.1205","DOIUrl":null,"url":null,"abstract":"Piezoelectric nanogenerators (NGs) hold immense promise as self-powered devices for harvesting mechanical energy from the environment. This study introduces an efficient and scalable synthesis method for zinc oxide (ZnO) nanorods, a pivotal material in piezoelectric nanogenerators (NGs), with several key results. A Chemical Bath Deposition technique is employed, optimizing parameters such as growth time, temperature, and precursor concentrations to achieve well-aligned and high-quality ZnO nanorods. The structural and morphological characteristics of the synthesized nanorods are systematically investigated using advanced characterization techniques. The synthesized ZnO nanorods exhibit an average length of 400nm, demonstrating their slender shape. Furthermore, the study determines an energy gap value of 3.5 eV for multilayer zinc oxide thin films, indicating the transition from the valence band to the conduction band. Notably, thermal annealing at 500°C leads to a substantial increase in average output voltage, reaching 1.95 V, a fourfold improvement compared to as-deposited nanopowders. These findings emphasize the efficiency and potential of the proposed synthesis method and underscore its practical applications in enhancing energy harvesting capabilities for sustainable power generation from mechanical sources in piezoelectric NGs.","PeriodicalId":21627,"journal":{"name":"Science Journal of University of Zakho","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of University of Zakho","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25271/sjuoz.2024.12.1.1205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Piezoelectric nanogenerators (NGs) hold immense promise as self-powered devices for harvesting mechanical energy from the environment. This study introduces an efficient and scalable synthesis method for zinc oxide (ZnO) nanorods, a pivotal material in piezoelectric nanogenerators (NGs), with several key results. A Chemical Bath Deposition technique is employed, optimizing parameters such as growth time, temperature, and precursor concentrations to achieve well-aligned and high-quality ZnO nanorods. The structural and morphological characteristics of the synthesized nanorods are systematically investigated using advanced characterization techniques. The synthesized ZnO nanorods exhibit an average length of 400nm, demonstrating their slender shape. Furthermore, the study determines an energy gap value of 3.5 eV for multilayer zinc oxide thin films, indicating the transition from the valence band to the conduction band. Notably, thermal annealing at 500°C leads to a substantial increase in average output voltage, reaching 1.95 V, a fourfold improvement compared to as-deposited nanopowders. These findings emphasize the efficiency and potential of the proposed synthesis method and underscore its practical applications in enhancing energy harvesting capabilities for sustainable power generation from mechanical sources in piezoelectric NGs.
高效合成作为压电纳米发电机电极的 zno
压电纳米发电机(NGs)作为从环境中获取机械能的自供电设备前景广阔。本研究介绍了压电纳米发电机(NGs)的关键材料--氧化锌(ZnO)纳米棒的高效、可扩展合成方法,并取得了几项关键成果。该研究采用了化学沉积技术,优化了生长时间、温度和前驱体浓度等参数,从而获得了排列整齐的高质量氧化锌纳米棒。利用先进的表征技术系统地研究了合成纳米棒的结构和形态特征。合成的氧化锌纳米棒平均长度为 400 纳米,显示出其细长的形状。此外,研究还确定了多层氧化锌薄膜的能隙值为 3.5 eV,表明其已从价带过渡到导带。值得注意的是,在 500°C 的温度下进行热退火可使平均输出电压大幅提高,达到 1.95 V,与沉积纳米粉体相比提高了四倍。这些发现凸显了所提出的合成方法的效率和潜力,并强调了其在压电负极材料中增强能量收集能力的实际应用,从而实现从机械源持续发电。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
35
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信