Aid System for Estimating Agricultural Yield Using a Deep Learning Technique: Tomato Case

Tahirou Djara, Sekoude Jehovah-nis Pedrie Sonon, Aziz Sobabe, Abdul-Qadir Sanny
{"title":"Aid System for Estimating Agricultural Yield Using a Deep Learning Technique: Tomato Case","authors":"Tahirou Djara, Sekoude Jehovah-nis Pedrie Sonon, Aziz Sobabe, Abdul-Qadir Sanny","doi":"10.9734/cjast/2024/v43i24350","DOIUrl":null,"url":null,"abstract":"The precision of traditional methods for estimating crop yield is a major challenge, particularly for large areas. To improve this process, we developed a tomato detection and localization system using deep learning techniques. The system uses Faster-RCNN, a cutting edge technology of object detection model, to detect and localize tomatoes in images. We trained the model on a database of 150 images, which were normalized to 100*100 pixels in RGB. The system estimates the real sizes of tomatoes using the Ground Sampling Distance method and predicts their masses using a regression model. The model produces an average absolute error of 42.365% and a quadratic error of 51.044%. Our system provides a more efficient and accurate way to estimate tomato crop yields on a large scale.","PeriodicalId":505676,"journal":{"name":"Current Journal of Applied Science and Technology","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Journal of Applied Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/cjast/2024/v43i24350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The precision of traditional methods for estimating crop yield is a major challenge, particularly for large areas. To improve this process, we developed a tomato detection and localization system using deep learning techniques. The system uses Faster-RCNN, a cutting edge technology of object detection model, to detect and localize tomatoes in images. We trained the model on a database of 150 images, which were normalized to 100*100 pixels in RGB. The system estimates the real sizes of tomatoes using the Ground Sampling Distance method and predicts their masses using a regression model. The model produces an average absolute error of 42.365% and a quadratic error of 51.044%. Our system provides a more efficient and accurate way to estimate tomato crop yields on a large scale.
利用深度学习技术估算农业产量的辅助系统:番茄案例
传统作物产量估算方法的精度是一大挑战,尤其是在大面积地区。为了改进这一过程,我们利用深度学习技术开发了一个番茄检测和定位系统。该系统使用对象检测模型的尖端技术 Faster-RCNN 来检测和定位图像中的番茄。我们在一个包含 150 幅图像的数据库中对该模型进行了训练,这些图像均归一化为 100*100 像素的 RGB 图像。该系统利用地面采样距离法估算西红柿的实际大小,并利用回归模型预测其质量。该模型产生的平均绝对误差为 42.365%,二次误差为 51.044%。我们的系统为大规模估算番茄产量提供了一种更高效、更准确的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信