{"title":"Penerapan Metode Support Vector Machine Terhadap Klasifikasi Jenis Jambu Biji","authors":"Ferry Putrawansyah","doi":"10.26798/jiko.v8i1.988","DOIUrl":null,"url":null,"abstract":"Penelitian ini bertujuan untuk menghasilkan Klasifikasi Jenis Jambu Biji dengan Metode Support Vector Machine dengan Image Processing. Penelitian ini dilatar belakangi dengan proses pengklasifikasian jenis jambu biji masih dilakukan secara konvensional yakni pengklasifikasian jambu biji masih berdasarkan pengamatan, warna dan bentuk dari jambu biji. Hal ini tentu saja membutuhkan waktu yang lama dan masih sering terjadi kesalahan, sehingga penelitian ini dapat membantu pengklasifikasian jambu biji menggunakan metode Support Vector Machine (SVM) dengan cepat. Sistem yang dibangun menggunakan Software MATLAB, dalam metode pengembangan sistem dalam penelitian ini adalah metode SDLC (Software Development Life Cycle), dimana tahapan meliputi analisis, desain, pengkodean dan pengujian, untuk metode pengujian menggunakan Confusion Matrix yang dibagi menjadi 2 yaitu data training dan data testing. Hasil dari penelitian ini yakni sistem Klasifikasi Jenis Jambu Biji dengan metode Support Vector Machine dengan Image Processing dimana pada 80 data training, menghasilkan 56 data berhasil dikenali dan 24 data tidak berhasil dikenali, sehingga mendapat persentase sebesar 70%. Kemudian setelah dilakukan holdout validation dengan 20 data testin, menghasilkan 16 data berhasil dikenali dan 4 data tidak berhasil dikenali, sehingga mendapat persentase sebesar 80%. Akhirnya sistem yang menerapkan support vector machine terhadap klasifikasi jambu biji dengan image processing mendapat akurasi yang tinggi ","PeriodicalId":243297,"journal":{"name":"JIKO (Jurnal Informatika dan Komputer)","volume":"30 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIKO (Jurnal Informatika dan Komputer)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26798/jiko.v8i1.988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Penelitian ini bertujuan untuk menghasilkan Klasifikasi Jenis Jambu Biji dengan Metode Support Vector Machine dengan Image Processing. Penelitian ini dilatar belakangi dengan proses pengklasifikasian jenis jambu biji masih dilakukan secara konvensional yakni pengklasifikasian jambu biji masih berdasarkan pengamatan, warna dan bentuk dari jambu biji. Hal ini tentu saja membutuhkan waktu yang lama dan masih sering terjadi kesalahan, sehingga penelitian ini dapat membantu pengklasifikasian jambu biji menggunakan metode Support Vector Machine (SVM) dengan cepat. Sistem yang dibangun menggunakan Software MATLAB, dalam metode pengembangan sistem dalam penelitian ini adalah metode SDLC (Software Development Life Cycle), dimana tahapan meliputi analisis, desain, pengkodean dan pengujian, untuk metode pengujian menggunakan Confusion Matrix yang dibagi menjadi 2 yaitu data training dan data testing. Hasil dari penelitian ini yakni sistem Klasifikasi Jenis Jambu Biji dengan metode Support Vector Machine dengan Image Processing dimana pada 80 data training, menghasilkan 56 data berhasil dikenali dan 24 data tidak berhasil dikenali, sehingga mendapat persentase sebesar 70%. Kemudian setelah dilakukan holdout validation dengan 20 data testin, menghasilkan 16 data berhasil dikenali dan 4 data tidak berhasil dikenali, sehingga mendapat persentase sebesar 80%. Akhirnya sistem yang menerapkan support vector machine terhadap klasifikasi jambu biji dengan image processing mendapat akurasi yang tinggi