Surface boundary layers   through  a scalar equation with  an eddy viscosity vanishing at the ground

R. Lewandowski, François Legeais, L. Berselli
{"title":"Surface boundary layers   through  a scalar equation with  an eddy viscosity vanishing at the ground","authors":"R. Lewandowski, François Legeais, L. Berselli","doi":"10.1051/m2an/2024009","DOIUrl":null,"url":null,"abstract":"We introduce a scalar elliptic equation defined on a boundary layer given by $\\Pi_2 \\times [0, z_{top}]$, where $\\Pi_2$ is a two dimensional torus, with an eddy vertical eddy viscosity of order \n$z^\\alpha$, $\\alpha \\in [0, 1]$, an homogeneous boundary condition at $z=0$, and a Robin condition at $z=z_{top}$. We show the existence of weak solutions to this boundary problem, distinguishing the cases \n$0 \\le \\alpha <1$ and $\\alpha = 1$.  Then we carry out several numerical simulations, showing the ability of our model to accurately reproduce profiles close to those predicted by the Monin-Obukhov theory, by calculating stabilizing functions.","PeriodicalId":505020,"journal":{"name":"ESAIM: Mathematical Modelling and Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM: Mathematical Modelling and Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/m2an/2024009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a scalar elliptic equation defined on a boundary layer given by $\Pi_2 \times [0, z_{top}]$, where $\Pi_2$ is a two dimensional torus, with an eddy vertical eddy viscosity of order  $z^\alpha$, $\alpha \in [0, 1]$, an homogeneous boundary condition at $z=0$, and a Robin condition at $z=z_{top}$. We show the existence of weak solutions to this boundary problem, distinguishing the cases  $0 \le \alpha <1$ and $\alpha = 1$.  Then we carry out several numerical simulations, showing the ability of our model to accurately reproduce profiles close to those predicted by the Monin-Obukhov theory, by calculating stabilizing functions.
通过标量方程计算地面涡流粘度消失的地表边界层
我们引入了一个定义在边界层上的标量椭圆方程,该边界层由 $\Pi_2 \times [0, z_{top}]$ 给出,其中 $\Pi_2$ 是一个二维环,具有阶数为 $z^\alpha$ 的垂直涡流粘度,$\alpha \ in [0, 1]$,在 $z=0$ 处为均质边界条件,在 $z=z_{top}$ 处为罗宾条件。我们证明了该边界问题弱解的存在,并区分了 $0 \le \alpha <1$ 和 $\alpha = 1$ 两种情况。 然后,我们进行了几次数值模拟,通过计算稳定函数,表明我们的模型能够准确地再现接近莫宁-奥布霍夫理论预测的剖面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信