Yahan Yang, Ramneet Kaur, Souradeep Dutta, Insup Lee
{"title":"Memory-based Distribution Shift Detection for Learning Enabled Cyber-Physical Systems with Statistical Guarantees","authors":"Yahan Yang, Ramneet Kaur, Souradeep Dutta, Insup Lee","doi":"10.1145/3643892","DOIUrl":null,"url":null,"abstract":"Incorporating learning based components in the current state-of-the-art cyber physical systems (CPS) has been a challenge due to the brittleness of the underlying deep neural networks. On the bright side, if executed correctly with safety guarantees, this has the ability to revolutionize domains like autonomous systems, medicine and other safety critical domains. This is because, it would allow system designers to use high dimensional outputs from sensors like camera and LiDAR. The trepidation in deploying systems with vision and LiDAR components comes from incidents of catastrophic failures in the real world. Recent reports of self-driving cars running into difficult to handle scenarios is ingrained in the software components which handle such sensor inputs.\n The ability to handle such high dimensional signals is due to the explosion of algorithms which use deep neural networks. Sadly, the reason behind the safety issues is also due to deep neural networks themselves. The pitfalls occur due to possible over-fitting, and lack of awareness about the blind spots induced by the training distribution. Ideally, system designers would wish to cover as many scenarios during training as possible. But, achieving a meaningful coverage is impossible. This naturally leads to the following question: Is it feasible to flag out-of-distribution (OOD) samples without causing too many false alarms? Such an OOD detector should be executable in a fashion that is computationally efficient. This is because OOD detectors often are executed as frequently as the sensors are sampled.\n Our aim in this paper is to build an effective anomaly detector. To this end, we propose the idea of a memory bank to cache data samples which are representative enough to cover most of the in-distribution data. The similarity with respect to such samples can be a measure of familiarity of the test input. This is made possible by an appropriate choice of distance function tailored to the type of sensor we are interested in. Additionally, we adapt conformal anomaly detection framework to capture the distribution shifts with a guarantee of false alarm rate. We report the performance of our technique on two challenging scenarios: a self-driving car setting implemented inside the simulator CARLA with image inputs and autonomous racing car navigation setting with LiDAR inputs. From the experiments, it is clear that a deviation from in-distribution setting can potentially lead to unsafe behavior. Although it should be noted that not all OOD inputs lead to precarious situations in practice, but staying in-distribution is akin to staying within a safety bubble and predictable behavior. An added benefit of our memory based approach is that the OOD detector produces interpretable feedback for a human designer. This is of utmost importance since it recommends a potential fix for the situation as well. In other competing approaches such a feedback is difficult to obtain due to reliance on techniques which use variational autoencoders.","PeriodicalId":505086,"journal":{"name":"ACM Transactions on Cyber-Physical Systems","volume":"80 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3643892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Incorporating learning based components in the current state-of-the-art cyber physical systems (CPS) has been a challenge due to the brittleness of the underlying deep neural networks. On the bright side, if executed correctly with safety guarantees, this has the ability to revolutionize domains like autonomous systems, medicine and other safety critical domains. This is because, it would allow system designers to use high dimensional outputs from sensors like camera and LiDAR. The trepidation in deploying systems with vision and LiDAR components comes from incidents of catastrophic failures in the real world. Recent reports of self-driving cars running into difficult to handle scenarios is ingrained in the software components which handle such sensor inputs.
The ability to handle such high dimensional signals is due to the explosion of algorithms which use deep neural networks. Sadly, the reason behind the safety issues is also due to deep neural networks themselves. The pitfalls occur due to possible over-fitting, and lack of awareness about the blind spots induced by the training distribution. Ideally, system designers would wish to cover as many scenarios during training as possible. But, achieving a meaningful coverage is impossible. This naturally leads to the following question: Is it feasible to flag out-of-distribution (OOD) samples without causing too many false alarms? Such an OOD detector should be executable in a fashion that is computationally efficient. This is because OOD detectors often are executed as frequently as the sensors are sampled.
Our aim in this paper is to build an effective anomaly detector. To this end, we propose the idea of a memory bank to cache data samples which are representative enough to cover most of the in-distribution data. The similarity with respect to such samples can be a measure of familiarity of the test input. This is made possible by an appropriate choice of distance function tailored to the type of sensor we are interested in. Additionally, we adapt conformal anomaly detection framework to capture the distribution shifts with a guarantee of false alarm rate. We report the performance of our technique on two challenging scenarios: a self-driving car setting implemented inside the simulator CARLA with image inputs and autonomous racing car navigation setting with LiDAR inputs. From the experiments, it is clear that a deviation from in-distribution setting can potentially lead to unsafe behavior. Although it should be noted that not all OOD inputs lead to precarious situations in practice, but staying in-distribution is akin to staying within a safety bubble and predictable behavior. An added benefit of our memory based approach is that the OOD detector produces interpretable feedback for a human designer. This is of utmost importance since it recommends a potential fix for the situation as well. In other competing approaches such a feedback is difficult to obtain due to reliance on techniques which use variational autoencoders.