Qualitative behaviors of a four-dimensional Lorenz system

Fuchen Zhang, Fei Xu, Xu Zhang
{"title":"Qualitative behaviors of a four-dimensional Lorenz system","authors":"Fuchen Zhang, Fei Xu, Xu Zhang","doi":"10.1088/1751-8121/ad26ac","DOIUrl":null,"url":null,"abstract":"\n In this paper, the qualitative behaviors of an important four-dimensional Lorenz system with wild pseudohyperbolic attractor that proposed in [Nonlinearity, 2021, 34: 2018 –2047] are considered. Here, we prove that the four-dimensional Lorenz system with varying parameters is global bounded according to Lyapunov's direct method. Furthermore, we provide a collection of global absorbing sets, where in addition we obtain the rate of the trajectories going from the exterior to the global absorbing set. In particular, we solve the critical case that cannot be resolved by using the previous methods. The fundamental qualitative behaviors are analyzed theoretically and numerically. We present bifurcation diagrams to further explore the complicated dynamical behaviors of this system. The period-doubling bifurcation phenomenon is found. To illustrate the efficiency of our method, we present numerical simulations to show the validity of our research results. Finally, we present some applications of our research results in this paper.","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad26ac","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the qualitative behaviors of an important four-dimensional Lorenz system with wild pseudohyperbolic attractor that proposed in [Nonlinearity, 2021, 34: 2018 –2047] are considered. Here, we prove that the four-dimensional Lorenz system with varying parameters is global bounded according to Lyapunov's direct method. Furthermore, we provide a collection of global absorbing sets, where in addition we obtain the rate of the trajectories going from the exterior to the global absorbing set. In particular, we solve the critical case that cannot be resolved by using the previous methods. The fundamental qualitative behaviors are analyzed theoretically and numerically. We present bifurcation diagrams to further explore the complicated dynamical behaviors of this system. The period-doubling bifurcation phenomenon is found. To illustrate the efficiency of our method, we present numerical simulations to show the validity of our research results. Finally, we present some applications of our research results in this paper.
四维洛伦兹系统的定性行为
本文考虑了[Nonlinearity, 2021, 34: 2018 -2047]中提出的具有野性伪双曲吸引子的重要四维洛伦兹系统的定性行为。在此,我们根据 Lyapunov 的直接方法证明了参数变化的四维 Lorenz 系统是全局有界的。此外,我们还提供了一个全局吸收集集合,并在此基础上得到了从外部到全局吸收集的轨迹速率。特别是,我们解决了以往方法无法解决的临界情况。我们从理论和数值上分析了基本的定性行为。我们给出了分岔图,以进一步探索该系统的复杂动力学行为。我们发现了周期加倍分岔现象。为了说明我们方法的效率,我们进行了数值模拟,以证明我们研究成果的有效性。最后,我们介绍了本文研究成果的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信