Amorphous diamond embedded in dense boron nitride with excellent mechanical properties

Junkai Li, Guoliang Niu, Peiyang Mu, Bingmin Yan, Fuyang Liu, Shijing Zhao, Leiming Fang, Huiyang Gou
{"title":"Amorphous diamond embedded in dense boron nitride with excellent mechanical properties","authors":"Junkai Li, Guoliang Niu, Peiyang Mu, Bingmin Yan, Fuyang Liu, Shijing Zhao, Leiming Fang, Huiyang Gou","doi":"10.20517/microstructures.2023.54","DOIUrl":null,"url":null,"abstract":"Diamond and cubic boron nitride (BN) are important materials with a variety of technological and industrial applications; however, overcoming the intrinsic brittleness of these materials is still a challenge. Here, we synthesize a compound of crystalline BN and amorphous diamond-like carbon through BN nanotubes and fullerene under high pressure and high temperature conditions. The obtained composite exhibits excellent combination of a measured Vickers’ hardness of 86.2 GPa and fracture toughness of 10.2 MPa m1/2. Morphological and structural characterizations reveal that the amorphous diamond-like carbon is homogeneously embedded in a matrix of dense BN. The formation of the amorphous diamond-like carbon particles within the polycrystalline BN can effectively impede the migration of crack tips when the compound is subjected to the plastic deformation, in which most of crack tips are forced to deflect or confined near the boundaries of dense BN and amorphous diamond particles. The crystalline-amorphous composite strengthening presented here may provide a promising strategy for the further improvement of mechanical properties of hard or superhard materials.","PeriodicalId":515723,"journal":{"name":"Microstructures","volume":"36 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microstructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/microstructures.2023.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diamond and cubic boron nitride (BN) are important materials with a variety of technological and industrial applications; however, overcoming the intrinsic brittleness of these materials is still a challenge. Here, we synthesize a compound of crystalline BN and amorphous diamond-like carbon through BN nanotubes and fullerene under high pressure and high temperature conditions. The obtained composite exhibits excellent combination of a measured Vickers’ hardness of 86.2 GPa and fracture toughness of 10.2 MPa m1/2. Morphological and structural characterizations reveal that the amorphous diamond-like carbon is homogeneously embedded in a matrix of dense BN. The formation of the amorphous diamond-like carbon particles within the polycrystalline BN can effectively impede the migration of crack tips when the compound is subjected to the plastic deformation, in which most of crack tips are forced to deflect or confined near the boundaries of dense BN and amorphous diamond particles. The crystalline-amorphous composite strengthening presented here may provide a promising strategy for the further improvement of mechanical properties of hard or superhard materials.
嵌入致密氮化硼的无定形金刚石具有卓越的机械性能
金刚石和立方氮化硼(BN)是具有多种技术和工业应用的重要材料;然而,克服这些材料的内在脆性仍然是一项挑战。在此,我们通过氮化硼纳米管和富勒烯在高压高温条件下合成了结晶氮化硼和无定形类金刚石碳的复合材料。所获得的复合材料具有出色的综合性能,维氏硬度测量值为 86.2 GPa,断裂韧性为 10.2 MPa m1/2。形态和结构特征显示,无定形类金刚石碳均匀地嵌入致密 BN 的基体中。在多晶 BN 中形成的非晶态类金刚石碳颗粒能在化合物发生塑性变形时有效阻碍裂纹尖端的迁移,在塑性变形中,大部分裂纹尖端被迫偏转或被限制在致密 BN 和非晶态金刚石颗粒的边界附近。本文介绍的晶体-非晶态复合强化技术可为进一步提高硬质或超硬材料的机械性能提供一种前景广阔的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信