{"title":"IFGAN—A Novel Image Fusion Model to Fuse 3D Point Cloud Sensory Data","authors":"H. Ignatious, Hesham El-Sayed, Salah Bouktif","doi":"10.3390/jsan13010015","DOIUrl":null,"url":null,"abstract":"To enhance the level of autonomy in driving, it is crucial to ensure optimal execution of critical maneuvers in all situations. However, numerous accidents involving autonomous vehicles (AVs) developed by major automobile manufacturers in recent years have been attributed to poor decision making caused by insufficient perception of environmental information. AVs employ diverse sensors in today’s technology-driven settings to gather this information. However, due to technical and natural factors, the data collected by these sensors may be incomplete or ambiguous, leading to misinterpretation by AVs and resulting in fatal accidents. Furthermore, environmental information obtained from multiple sources in the vehicular environment often exhibits multimodal characteristics. To address this limitation, effective preprocessing of raw sensory data becomes essential, involving two crucial tasks: data cleaning and data fusion. In this context, we propose a comprehensive data fusion engine that categorizes various sensory data formats and appropriately merges them to enhance accuracy. Specifically, we suggest a general framework to combine audio, visual, and textual data, building upon our previous research on an innovative hybrid image fusion model that fused multispectral image data. However, this previous model faced challenges when fusing 3D point cloud data and handling large volumes of sensory data. To overcome these challenges, our study introduces a novel image fusion model called Image Fusion Generative Adversarial Network (IFGAN), which incorporates a multi-scale attention mechanism into both the generator and discriminator of a Generative Adversarial Network (GAN). The primary objective of image fusion is to merge complementary data from various perspectives of the same scene to enhance the clarity and detail of the final image. The multi-scale attention mechanism serves two purposes: the first, capturing comprehensive spatial information to enable the generator to focus on foreground and background target information in the sensory data, and the second, constraining the discriminator to concentrate on attention regions rather than the entire input image. Furthermore, the proposed model integrates the color information retention concept from the previously proposed image fusion model. Furthermore, we propose simple and efficient models for extracting salient image features. We evaluate the proposed models using various standard metrics and compare them with existing popular models. The results demonstrate that our proposed image fusion model outperforms the other models in terms of performance.","PeriodicalId":37584,"journal":{"name":"Journal of Sensor and Actuator Networks","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensor and Actuator Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jsan13010015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
To enhance the level of autonomy in driving, it is crucial to ensure optimal execution of critical maneuvers in all situations. However, numerous accidents involving autonomous vehicles (AVs) developed by major automobile manufacturers in recent years have been attributed to poor decision making caused by insufficient perception of environmental information. AVs employ diverse sensors in today’s technology-driven settings to gather this information. However, due to technical and natural factors, the data collected by these sensors may be incomplete or ambiguous, leading to misinterpretation by AVs and resulting in fatal accidents. Furthermore, environmental information obtained from multiple sources in the vehicular environment often exhibits multimodal characteristics. To address this limitation, effective preprocessing of raw sensory data becomes essential, involving two crucial tasks: data cleaning and data fusion. In this context, we propose a comprehensive data fusion engine that categorizes various sensory data formats and appropriately merges them to enhance accuracy. Specifically, we suggest a general framework to combine audio, visual, and textual data, building upon our previous research on an innovative hybrid image fusion model that fused multispectral image data. However, this previous model faced challenges when fusing 3D point cloud data and handling large volumes of sensory data. To overcome these challenges, our study introduces a novel image fusion model called Image Fusion Generative Adversarial Network (IFGAN), which incorporates a multi-scale attention mechanism into both the generator and discriminator of a Generative Adversarial Network (GAN). The primary objective of image fusion is to merge complementary data from various perspectives of the same scene to enhance the clarity and detail of the final image. The multi-scale attention mechanism serves two purposes: the first, capturing comprehensive spatial information to enable the generator to focus on foreground and background target information in the sensory data, and the second, constraining the discriminator to concentrate on attention regions rather than the entire input image. Furthermore, the proposed model integrates the color information retention concept from the previously proposed image fusion model. Furthermore, we propose simple and efficient models for extracting salient image features. We evaluate the proposed models using various standard metrics and compare them with existing popular models. The results demonstrate that our proposed image fusion model outperforms the other models in terms of performance.
期刊介绍:
Journal of Sensor and Actuator Networks (ISSN 2224-2708) is an international open access journal on the science and technology of sensor and actuator networks. It publishes regular research papers, reviews (including comprehensive reviews on complete sensor and actuator networks), and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.