Time varying discrete cosine transform based on shaping regularization and its application in seismic data analysis

IF 1.6 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Zhaolin Zhu, Guoning Wu, Yaxin Gu, Jinliang Huang, Zhihao Chen, Haotian Lu
{"title":"Time varying discrete cosine transform based on shaping regularization and its application in seismic data analysis","authors":"Zhaolin Zhu, Guoning Wu, Yaxin Gu, Jinliang Huang, Zhihao Chen, Haotian Lu","doi":"10.1093/jge/gxae016","DOIUrl":null,"url":null,"abstract":"\n The discrete cosine transform is a commonly used technique in the field of signal processing that employs cosine basis functions for signal analysis. Traditionally, the regression coefficients of the cosine basis functions are solely based on frequency information. This paper extends the regression coefficients associated with the cosine basis functions to take into account both frequency and time information, not just frequency information alone. This modification results in an ill-posed linear system, which requires regularization to prevent overfitting. To address this, the paper uses shaping regularization, a technique used to stabilize ill-posed problems. By doing so, the absolute values of these extended coefficients, now exhibiting variations in both frequency and time domains, are defined as the time-frequency distribution of that input signal. The numerical experiments conducted to validate this approach demonstrate that the proposed method yields a commendable time-frequency resolution. Consequently, it proves valuable for interpreting seismic data, showcasing its potential for applications in this field.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae016","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The discrete cosine transform is a commonly used technique in the field of signal processing that employs cosine basis functions for signal analysis. Traditionally, the regression coefficients of the cosine basis functions are solely based on frequency information. This paper extends the regression coefficients associated with the cosine basis functions to take into account both frequency and time information, not just frequency information alone. This modification results in an ill-posed linear system, which requires regularization to prevent overfitting. To address this, the paper uses shaping regularization, a technique used to stabilize ill-posed problems. By doing so, the absolute values of these extended coefficients, now exhibiting variations in both frequency and time domains, are defined as the time-frequency distribution of that input signal. The numerical experiments conducted to validate this approach demonstrate that the proposed method yields a commendable time-frequency resolution. Consequently, it proves valuable for interpreting seismic data, showcasing its potential for applications in this field.
基于整形正则化的时变离散余弦变换及其在地震数据分析中的应用
离散余弦变换是信号处理领域的一种常用技术,它利用余弦基函数进行信号分析。传统上,余弦基函数的回归系数仅基于频率信息。本文扩展了余弦基函数的相关回归系数,使其不仅考虑频率信息,还考虑时间信息。这种修改会产生一个问题严重的线性系统,需要进行正则化处理以防止过拟合。为了解决这个问题,本文采用了整形正则化技术,这是一种用于稳定问题的技术。通过这种方法,这些扩展系数的绝对值(现在在频域和时域都有变化)被定义为输入信号的时频分布。为验证这种方法而进行的数值实验表明,所提出的方法具有值得称赞的时频分辨率。因此,该方法对解释地震数据很有价值,展示了其在该领域的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysics and Engineering
Journal of Geophysics and Engineering 工程技术-地球化学与地球物理
CiteScore
2.50
自引率
21.40%
发文量
87
审稿时长
4 months
期刊介绍: Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信