Research on 5G User Perception Detection and Experience Improvement Optimization Based on Capsule Network

Pub Date : 2024-02-07 DOI:10.4018/ijitn.337785
JianTong Yu, Li Li
{"title":"Research on 5G User Perception Detection and Experience Improvement Optimization Based on Capsule Network","authors":"JianTong Yu, Li Li","doi":"10.4018/ijitn.337785","DOIUrl":null,"url":null,"abstract":"COVID-19 caused a global public disaster as well as an economic crisis, and other challenges. The fifth-generation network, or 5G, connects practically every machine, person, and thing on the planet. We can analyse the public's opinions and sentiments connected to COVID-19 from 5G user-generated content on social media, which will eventually aid in promoting health intervention strategies and designing successful projects based on public perceptions. The BERT language model is first used to preprocess data that has been obtained from Sina Weibo. Following that, the features of the preprocessed data are chosen using a class-wise information technique. Finally, a capsule network (CapsNet) approach is used to identify the 5G user perception and experience optimization. Dynamic routing algorithm is used for optimizing the capsule network. By comparing the suggested framework's performance with certain existing approaches, its effectiveness is evaluated. Simulation results show that the proposed method is more accurate than previous approaches at identifying 5G user experiences.","PeriodicalId":0,"journal":{"name":"","volume":"9 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitn.337785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

COVID-19 caused a global public disaster as well as an economic crisis, and other challenges. The fifth-generation network, or 5G, connects practically every machine, person, and thing on the planet. We can analyse the public's opinions and sentiments connected to COVID-19 from 5G user-generated content on social media, which will eventually aid in promoting health intervention strategies and designing successful projects based on public perceptions. The BERT language model is first used to preprocess data that has been obtained from Sina Weibo. Following that, the features of the preprocessed data are chosen using a class-wise information technique. Finally, a capsule network (CapsNet) approach is used to identify the 5G user perception and experience optimization. Dynamic routing algorithm is used for optimizing the capsule network. By comparing the suggested framework's performance with certain existing approaches, its effectiveness is evaluated. Simulation results show that the proposed method is more accurate than previous approaches at identifying 5G user experiences.
分享
查看原文
基于胶囊网络的 5G 用户感知检测与体验改善优化研究
COVID-19 引发了全球公共灾难、经济危机和其他挑战。第五代网络(或称 5G)几乎连接了地球上的每一台机器、每一个人和每一件事物。我们可以从社交媒体上的 5G 用户生成内容中分析与 COVID-19 相关的公众意见和情绪,这最终将有助于推广健康干预策略,并根据公众看法设计成功的项目。BERT 语言模型首先用于预处理从新浪微博获取的数据。然后,使用分类信息技术选择预处理数据的特征。最后,使用胶囊网络(CapsNet)方法来识别 5G 用户感知和体验优化。动态路由算法用于优化胶囊网络。通过比较建议框架与某些现有方法的性能,对其有效性进行了评估。仿真结果表明,在识别 5G 用户体验方面,建议的方法比以前的方法更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信