Influence of Non-Parallelism on the Micro-Interface Lubrication Mechanism of Water-Lubricated Bearings

Lin Sun, Jianchao Shi, Tao Jiang, Zhen Li, Yu Wang, Zhaozeng Liu
{"title":"Influence of Non-Parallelism on the Micro-Interface Lubrication Mechanism of Water-Lubricated Bearings","authors":"Lin Sun, Jianchao Shi, Tao Jiang, Zhen Li, Yu Wang, Zhaozeng Liu","doi":"10.3390/lubricants12020049","DOIUrl":null,"url":null,"abstract":"Water-lubricated bearings can effectively solve the pollution problem caused by lubricant leakage and are used in offshore engineering equipment for this reason. Aiming at the problems of unclear and undefined micro-interface lubrication mechanisms of water-lubricated bearings, this paper investigates the influence of non-parallel micro-cavities on the micro-interface lubrication mechanism of bearings. Based on a single micro-cavity model, the lubrication mechanism of micro-cavities is studied in this paper. Lubrication models of the non-parallel contact friction pairs model are built, and the effect of the non-parallelism on the lubrication performance of the micro-cavities is obtained using the computational fluid dynamics method. The results show that, under the same Reynolds number and cavitation pressure, the wedge effect caused by the non-parallelism causes the pressure at the inlet to rise, thus increasing the load-carrying capacity. The existence of non-parallelism limits the rise of the high pressure of the inertia effect on the micro-cavities and reduces the load-carrying capacity. The presence of non-parallelism decreases the area of the negative pressure proportion and increases the proportion of the positive pressure zone inside the micro-cavities, thus increasing the load-carrying capacity.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":" 33","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/lubricants12020049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Water-lubricated bearings can effectively solve the pollution problem caused by lubricant leakage and are used in offshore engineering equipment for this reason. Aiming at the problems of unclear and undefined micro-interface lubrication mechanisms of water-lubricated bearings, this paper investigates the influence of non-parallel micro-cavities on the micro-interface lubrication mechanism of bearings. Based on a single micro-cavity model, the lubrication mechanism of micro-cavities is studied in this paper. Lubrication models of the non-parallel contact friction pairs model are built, and the effect of the non-parallelism on the lubrication performance of the micro-cavities is obtained using the computational fluid dynamics method. The results show that, under the same Reynolds number and cavitation pressure, the wedge effect caused by the non-parallelism causes the pressure at the inlet to rise, thus increasing the load-carrying capacity. The existence of non-parallelism limits the rise of the high pressure of the inertia effect on the micro-cavities and reduces the load-carrying capacity. The presence of non-parallelism decreases the area of the negative pressure proportion and increases the proportion of the positive pressure zone inside the micro-cavities, thus increasing the load-carrying capacity.
非平行度对水润滑轴承微界面润滑机制的影响
水润滑轴承可以有效解决润滑油泄漏造成的污染问题,因此被广泛应用于海洋工程设备中。针对水润滑轴承微界面润滑机理不清晰、不明确的问题,本文研究了非平行微腔对轴承微界面润滑机理的影响。本文基于单个微腔模型,研究了微腔的润滑机理。建立了非平行接触摩擦对模型的润滑模型,并利用计算流体动力学方法得出了非平行度对微腔润滑性能的影响。结果表明,在相同的雷诺数和空化压力下,非平行度导致的楔形效应会使入口处的压力升高,从而提高承载能力。非平行度的存在限制了微空腔惯性效应高压的上升,降低了承载能力。非平行度的存在减少了负压区的面积比例,增加了微腔内正压区的面积比例,从而提高了承载能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信