AIIRA: AI Institute for Resilient Agriculture

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ai Magazine Pub Date : 2024-02-09 DOI:10.1002/aaai.12151
Baskar Ganapathysubramanian, Jessica M. P. Bell, George Kantor, Nirav Merchant, Soumik Sarkar, Patrick S. Schnable, Michelle Segovia, Arti Singh, Asheesh K. Singh
{"title":"AIIRA: AI Institute for Resilient Agriculture","authors":"Baskar Ganapathysubramanian,&nbsp;Jessica M. P. Bell,&nbsp;George Kantor,&nbsp;Nirav Merchant,&nbsp;Soumik Sarkar,&nbsp;Patrick S. Schnable,&nbsp;Michelle Segovia,&nbsp;Arti Singh,&nbsp;Asheesh K. Singh","doi":"10.1002/aaai.12151","DOIUrl":null,"url":null,"abstract":"<p><span>AIIRA</span> seeks to transform agriculture by creating a new AI-driven framework for modeling plants at various agronomically relevant scales. We accomplish this by designing and deploying AI-driven predictive models that fuse diverse data with siloed domain knowledge. <span>AIIRA</span>'s vision, illustrated in Figure 1, consists of four technical thrusts with cross-cutting education, training, and outreach activities. Our activities are focused on theory, algorithms, and tools for the principled creation of goal-oriented AI tools deployed at plant and field scales. Our use-inspired AI developments are tightly integrated with USDA-relevant challenges in crop improvement and sustainable crop production. Our strong social science focus ensures sustained AI adoption across the ag value chain. Our cyberinfrastructure (CI) efforts ensure cohesive, sustainable, and extensible CI to reproducibly share and manage data assets and analysis workflows to a diverse spectrum of the Ag community. Taken together, this will ensure long-term payoffs in AI and agriculture. <span>AIIRA</span> has established a new field of <i>Cyber Agricultural Systems</i> at the intersection of plant science, agronomics, and AI. Our signature activities build the workforce for this new field through formal and informal educational activities. Through these activities, <span>AIIRA</span>  creates accessible pathways for underrepresented groups, especially Native Americans and women.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 1","pages":"94-98"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12151","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12151","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

AIIRA seeks to transform agriculture by creating a new AI-driven framework for modeling plants at various agronomically relevant scales. We accomplish this by designing and deploying AI-driven predictive models that fuse diverse data with siloed domain knowledge. AIIRA's vision, illustrated in Figure 1, consists of four technical thrusts with cross-cutting education, training, and outreach activities. Our activities are focused on theory, algorithms, and tools for the principled creation of goal-oriented AI tools deployed at plant and field scales. Our use-inspired AI developments are tightly integrated with USDA-relevant challenges in crop improvement and sustainable crop production. Our strong social science focus ensures sustained AI adoption across the ag value chain. Our cyberinfrastructure (CI) efforts ensure cohesive, sustainable, and extensible CI to reproducibly share and manage data assets and analysis workflows to a diverse spectrum of the Ag community. Taken together, this will ensure long-term payoffs in AI and agriculture. AIIRA has established a new field of Cyber Agricultural Systems at the intersection of plant science, agronomics, and AI. Our signature activities build the workforce for this new field through formal and informal educational activities. Through these activities, AIIRA  creates accessible pathways for underrepresented groups, especially Native Americans and women.

Abstract Image

AIIRA:人工智能抗灾农业研究所
AIIRA 致力于通过创建一个新的人工智能驱动框架,在各种农艺相关尺度上对植物进行建模,从而改变农业。我们通过设计和部署人工智能驱动的预测模型,将各种数据与孤立的领域知识融合在一起,从而实现这一目标。AIIRA 的愿景(如图 1 所示)由四个技术重点以及贯穿各领域的教育、培训和外联活动组成。我们的活动主要集中在理论、算法和工具方面,以便有原则地创建面向目标的人工智能工具,并将其部署到工厂和田间。我们以使用为灵感的人工智能开发与美国农业部在作物改良和可持续作物生产方面的相关挑战紧密结合。我们对社会科学的高度重视确保了人工智能在整个农业价值链中的持续应用。我们的网络基础设施(CI)工作确保了具有凝聚力、可持续性和可扩展性的 CI,以可再现的方式为农业社区的不同领域共享和管理数据资产和分析工作流程。总之,这将确保人工智能和农业的长期回报。AIIRA 在植物科学、农艺学和人工智能的交叉领域建立了一个新的网络农业系统领域。我们的特色活动是通过正式和非正式的教育活动为这一新领域培养人才。通过这些活动,AIIRA 为代表性不足的群体,特别是美国本土人和妇女,创造了无障碍的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ai Magazine
Ai Magazine 工程技术-计算机:人工智能
CiteScore
3.90
自引率
11.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信