Feng Wang, Tao Wang, Yafeng He, Zhiqiang Yu, Yiming Shen, M. Kang
{"title":"Numerical simulation and experimental research on through-mask electrochemical machining of micro-dimple arrays using inner-jet cathodes","authors":"Feng Wang, Tao Wang, Yafeng He, Zhiqiang Yu, Yiming Shen, M. Kang","doi":"10.1177/09544054241229499","DOIUrl":null,"url":null,"abstract":"The surface micro-dimple arrays can effectively improve the friction and lubrication performance of moving parts and are widely used in cutting tools and mechanical transmissions. Through-mask electrochemical machining (TMECM) is a process that uses the anodic dissolution principle to remove materials at low temperatures. It is suitable for efficiently processing large-area micro-dimple arrays on metal surfaces. However, the previous TMECM method still suffers from the problem of low processing adaptability. In this paper, a new method for scanning-cathode TMECM by utilizing the fluid dynamic pressure effect was proposed, and the flow field and electric field models of various inner-jet cathodes were developed as well. Through numerical simulations of the flow field and electric field, the flow velocity, electrolyte pressure, and current density distributions for different inner-jet cathodes were investigated to determine an appropriate cathode. Contrasting experiments were conducted to investigate the variations in electrolyte flow states and machining currents for different inner-jet cathodes. Additionally, the changes in micro-dimple dimensions under different machining parameters were investigated. Moreover, the micro-dimple arrays of 385.7 μm in diameter and 111.8 μm in depth, 288.8 μm in diameter and 40.3 μm in depth, and micro-dimple arrays with an etching factor of 1.69 were fabricated, and the results demonstrated the good processing adaptability of the scanning-cathode TMECM.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054241229499","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The surface micro-dimple arrays can effectively improve the friction and lubrication performance of moving parts and are widely used in cutting tools and mechanical transmissions. Through-mask electrochemical machining (TMECM) is a process that uses the anodic dissolution principle to remove materials at low temperatures. It is suitable for efficiently processing large-area micro-dimple arrays on metal surfaces. However, the previous TMECM method still suffers from the problem of low processing adaptability. In this paper, a new method for scanning-cathode TMECM by utilizing the fluid dynamic pressure effect was proposed, and the flow field and electric field models of various inner-jet cathodes were developed as well. Through numerical simulations of the flow field and electric field, the flow velocity, electrolyte pressure, and current density distributions for different inner-jet cathodes were investigated to determine an appropriate cathode. Contrasting experiments were conducted to investigate the variations in electrolyte flow states and machining currents for different inner-jet cathodes. Additionally, the changes in micro-dimple dimensions under different machining parameters were investigated. Moreover, the micro-dimple arrays of 385.7 μm in diameter and 111.8 μm in depth, 288.8 μm in diameter and 40.3 μm in depth, and micro-dimple arrays with an etching factor of 1.69 were fabricated, and the results demonstrated the good processing adaptability of the scanning-cathode TMECM.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.