{"title":"Code is law: how COMPAS affects the way the judiciary handles the risk of recidivism","authors":"Christoph Engel, Lorenz Linhardt, Marcel Schubert","doi":"10.1007/s10506-024-09389-8","DOIUrl":null,"url":null,"abstract":"<div><p>Judges in multiple US states, such as New York, Pennsylvania, Wisconsin, California, and Florida, receive a prediction of defendants’ recidivism risk, generated by the COMPAS algorithm. If judges act on these predictions, they implicitly delegate normative decisions to proprietary software, even beyond the previously documented race and age biases. Using the ProPublica dataset, we demonstrate that COMPAS predictions favor jailing over release. COMPAS is biased against defendants. We show that this bias can largely be removed. Our proposed correction increases overall accuracy, and attenuates anti-black and anti-young bias. However, it also slightly increases the risk that defendants are released who commit a new crime before tried. We argue that this normative decision should not be buried in the code. The tradeoff between the interests of innocent defendants and of future victims should not only be made transparent. The algorithm should be changed such that the legislator and the courts do make this choice.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"33 2","pages":"383 - 404"},"PeriodicalIF":3.1000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10506-024-09389-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Law","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10506-024-09389-8","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Judges in multiple US states, such as New York, Pennsylvania, Wisconsin, California, and Florida, receive a prediction of defendants’ recidivism risk, generated by the COMPAS algorithm. If judges act on these predictions, they implicitly delegate normative decisions to proprietary software, even beyond the previously documented race and age biases. Using the ProPublica dataset, we demonstrate that COMPAS predictions favor jailing over release. COMPAS is biased against defendants. We show that this bias can largely be removed. Our proposed correction increases overall accuracy, and attenuates anti-black and anti-young bias. However, it also slightly increases the risk that defendants are released who commit a new crime before tried. We argue that this normative decision should not be buried in the code. The tradeoff between the interests of innocent defendants and of future victims should not only be made transparent. The algorithm should be changed such that the legislator and the courts do make this choice.
期刊介绍:
Artificial Intelligence and Law is an international forum for the dissemination of original interdisciplinary research in the following areas: Theoretical or empirical studies in artificial intelligence (AI), cognitive psychology, jurisprudence, linguistics, or philosophy which address the development of formal or computational models of legal knowledge, reasoning, and decision making. In-depth studies of innovative artificial intelligence systems that are being used in the legal domain. Studies which address the legal, ethical and social implications of the field of Artificial Intelligence and Law.
Topics of interest include, but are not limited to, the following: Computational models of legal reasoning and decision making; judgmental reasoning, adversarial reasoning, case-based reasoning, deontic reasoning, and normative reasoning. Formal representation of legal knowledge: deontic notions, normative
modalities, rights, factors, values, rules. Jurisprudential theories of legal reasoning. Specialized logics for law. Psychological and linguistic studies concerning legal reasoning. Legal expert systems; statutory systems, legal practice systems, predictive systems, and normative systems. AI and law support for legislative drafting, judicial decision-making, and
public administration. Intelligent processing of legal documents; conceptual retrieval of cases and statutes, automatic text understanding, intelligent document assembly systems, hypertext, and semantic markup of legal documents. Intelligent processing of legal information on the World Wide Web, legal ontologies, automated intelligent legal agents, electronic legal institutions, computational models of legal texts. Ramifications for AI and Law in e-Commerce, automatic contracting and negotiation, digital rights management, and automated dispute resolution. Ramifications for AI and Law in e-governance, e-government, e-Democracy, and knowledge-based systems supporting public services, public dialogue and mediation. Intelligent computer-assisted instructional systems in law or ethics. Evaluation and auditing techniques for legal AI systems. Systemic problems in the construction and delivery of legal AI systems. Impact of AI on the law and legal institutions. Ethical issues concerning legal AI systems. In addition to original research contributions, the Journal will include a Book Review section, a series of Technology Reports describing existing and emerging products, applications and technologies, and a Research Notes section of occasional essays posing interesting and timely research challenges for the field of Artificial Intelligence and Law. Financial support for the Journal of Artificial Intelligence and Law is provided by the University of Pittsburgh School of Law.