INDUCED SEISMICITY DATA PREP

Caroline Breton, Michael Shensky, Alexandros Savvaidis
{"title":"INDUCED SEISMICITY DATA PREP","authors":"Caroline Breton, Michael Shensky, Alexandros Savvaidis","doi":"10.1190/int-2023-0013.1","DOIUrl":null,"url":null,"abstract":"In this paper, we investigated causal factors of induced seismicity in the Permian Basin by collecting and processing data on reported earthquakes, hydraulic fracture operations and salt water disposal. We collected data from five online sources: (1) the TexNet Earthquake Catalog, which provides earthquake data for Texas; (2) the TexNet Injection Volume Reporting Tool, which provides daily salt water disposal data for select Texas wells; (3) the FracFocus Chemical Disclosure Registry, which provides hydraulic fracture data to the public; and (4) B3 Insight and (5) IHS Enerdeq Browser, which are proprietary database services that provide current and historical well data through paid subscriptions. TexNet makes their data available to the public at dynamic map websites. We automate data processing and data management using Python and ArcGIS Pro tools. The workflow produces quick, reliable, consistent and reproducible output. We developed a Python script for each collected data table to filter, select fields and write a new table. We created ArcGIS Pro Model Builder models for each new table to control format properties at import to geodatabase. Further models contain customized ArcToolbox tools arranged in order to run geospatial, quality assurance and quality control processing steps. In addition to discussing the source data and general workflow, we also review results of the automated data processing. To illustrate our method, we create areas of investigation around the 5.4 magnitude Coalson earthquake to collect and process available data to create maps, charts and data products for use in subsequent analysis. We make our Python scripts available on GitHub (https://github.com/ut-beg/py4_texnet_eqcat).","PeriodicalId":502519,"journal":{"name":"Interpretation","volume":" 1236","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interpretation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/int-2023-0013.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigated causal factors of induced seismicity in the Permian Basin by collecting and processing data on reported earthquakes, hydraulic fracture operations and salt water disposal. We collected data from five online sources: (1) the TexNet Earthquake Catalog, which provides earthquake data for Texas; (2) the TexNet Injection Volume Reporting Tool, which provides daily salt water disposal data for select Texas wells; (3) the FracFocus Chemical Disclosure Registry, which provides hydraulic fracture data to the public; and (4) B3 Insight and (5) IHS Enerdeq Browser, which are proprietary database services that provide current and historical well data through paid subscriptions. TexNet makes their data available to the public at dynamic map websites. We automate data processing and data management using Python and ArcGIS Pro tools. The workflow produces quick, reliable, consistent and reproducible output. We developed a Python script for each collected data table to filter, select fields and write a new table. We created ArcGIS Pro Model Builder models for each new table to control format properties at import to geodatabase. Further models contain customized ArcToolbox tools arranged in order to run geospatial, quality assurance and quality control processing steps. In addition to discussing the source data and general workflow, we also review results of the automated data processing. To illustrate our method, we create areas of investigation around the 5.4 magnitude Coalson earthquake to collect and process available data to create maps, charts and data products for use in subsequent analysis. We make our Python scripts available on GitHub (https://github.com/ut-beg/py4_texnet_eqcat).
诱发地震数据预处理
在本文中,我们通过收集和处理有关已报告地震、水力压裂作业和盐水处理的数据,调查了二叠纪盆地诱发地震的成因。我们从五个在线来源收集数据:(1) TexNet 地震目录,提供德克萨斯州的地震数据;(2) TexNet 注入量报告工具,提供德克萨斯州部分油井的每日盐水处理数据;(3) FracFocus 化学物质披露注册表,向公众提供水力压裂数据;(4) B3 Insight 和 (5) IHS Enerdeq 浏览器,它们是通过付费订阅提供当前和历史油井数据的专有数据库服务。TexNet 通过动态地图网站向公众提供数据。我们使用 Python 和 ArcGIS Pro 工具实现了数据处理和数据管理的自动化。该工作流程可产生快速、可靠、一致且可重复的输出结果。我们为每个收集的数据表开发了一个 Python 脚本,用于过滤、选择字段和编写新表。我们为每个新表创建了 ArcGIS Pro Model Builder 模型,以控制导入地理数据库时的格式属性。其他模型包含定制的 ArcToolbox 工具,以便运行地理空间、质量保证和质量控制处理步骤。除了讨论源数据和一般工作流程外,我们还回顾了自动数据处理的结果。为了说明我们的方法,我们在 5.4 级科尔森地震周围创建了调查区域,以收集和处理可用数据,创建地图、图表和数据产品,供后续分析使用。我们在 GitHub (https://github.com/ut-beg/py4_texnet_eqcat) 上提供了我们的 Python 脚本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信