Nonassociative Geometric and Quantum Information Flows and R‐Flux Deformations of Wormhole Solutions in String Gravity

Laurentiu Bubuianu, Douglas Singleton, S. Vacaru, E. V. Veliev
{"title":"Nonassociative Geometric and Quantum Information Flows and R‐Flux Deformations of Wormhole Solutions in String Gravity","authors":"Laurentiu Bubuianu, Douglas Singleton, S. Vacaru, E. V. Veliev","doi":"10.1002/prop.202300212","DOIUrl":null,"url":null,"abstract":"This article consists of an introduction to the theory of nonassociative geometric classical and quantum information flows defined by star products with R‐flux deformations in string gravity. Corresponding nonassociative generalizations of the concepts of classical Shannon entropy, quantum von Neumann entropy, Rényi entropy are formulated. The fundamental geometric and quantum information objects are computed following the Grigori Perelman statistical thermodynamic approach to Ricci flows and gravity theories generalized for phase spaces modeled as (co) tangent Lorentz bundles. Nonassociative parametric deformations and nonholonomic thermo‐geometric versions of statistical generating functions, their quantum analogues as density matrices are considered for deriving the entropy, energy and fluctuation functionals. This allows us to define and compute respective classical and quantum relative and conditional entropies, mutual information and nonassociative entanglement and thermodynamic information variables. The principles of nonassociative quantum geometric and information flow theory, QGIF, and study the basic properties of such quasi‐stationary models related to modified gravity theories are formulated. Applications are considered for nonassociative deformed and entangled couples of four‐dimensional (4‐d), wormholes (defined by respective spacetime and/or momentum type coordinates) and nonassociative QGIFs of 8‐d phase space generalized wormholes configurations. Finally, phase space black holes and wormholes being transversable for nonassociative qubits, quantum channels and entanglement witness are speculated; thought and laboratory experiments are discussed; and perspectives for quantum computer modeling and tests of nonassociative geometric flow and gravity theories are considered.","PeriodicalId":12381,"journal":{"name":"Fortschritte der Physik","volume":"111 42","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte der Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/prop.202300212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article consists of an introduction to the theory of nonassociative geometric classical and quantum information flows defined by star products with R‐flux deformations in string gravity. Corresponding nonassociative generalizations of the concepts of classical Shannon entropy, quantum von Neumann entropy, Rényi entropy are formulated. The fundamental geometric and quantum information objects are computed following the Grigori Perelman statistical thermodynamic approach to Ricci flows and gravity theories generalized for phase spaces modeled as (co) tangent Lorentz bundles. Nonassociative parametric deformations and nonholonomic thermo‐geometric versions of statistical generating functions, their quantum analogues as density matrices are considered for deriving the entropy, energy and fluctuation functionals. This allows us to define and compute respective classical and quantum relative and conditional entropies, mutual information and nonassociative entanglement and thermodynamic information variables. The principles of nonassociative quantum geometric and information flow theory, QGIF, and study the basic properties of such quasi‐stationary models related to modified gravity theories are formulated. Applications are considered for nonassociative deformed and entangled couples of four‐dimensional (4‐d), wormholes (defined by respective spacetime and/or momentum type coordinates) and nonassociative QGIFs of 8‐d phase space generalized wormholes configurations. Finally, phase space black holes and wormholes being transversable for nonassociative qubits, quantum channels and entanglement witness are speculated; thought and laboratory experiments are discussed; and perspectives for quantum computer modeling and tests of nonassociative geometric flow and gravity theories are considered.
弦引力中虫洞解决方案的非关联几何和量子信息流与 R 流变形
本文介绍了由弦引力中 R 流变形的星积定义的非关联几何经典和量子信息流理论。对经典香农熵、量子冯-诺伊曼熵和雷尼熵的概念进行了相应的非关联概括。按照格里高利-佩雷尔曼统计热力学方法,计算了里奇流和引力理论的基本几何和量子信息对象,并将相空间模型化为(共)切洛伦兹束。在推导熵、能量和波动函数时,考虑了统计生成函数的非关联参数变形和非整体热几何版本,以及它们作为密度矩阵的量子类似物。这样,我们就能定义和计算各自的经典和量子相对熵和条件熵、互信息和非关联纠缠以及热力学信息变量。我们提出了非关联量子几何和信息流理论(QGIF)的原理,并研究了与修正引力理论相关的此类准稳态模型的基本特性。研究还考虑了四维(4-d)虫洞(由各自的时空和/或动量类型坐标定义)的非关联变形和纠缠耦合以及 8-d 相空间广义虫洞配置的非关联 QGIFs 的应用。最后,推测了相空间黑洞和虫洞对非关联量子比特、量子通道和纠缠见证的可穿越性;讨论了思想和实验室实验;并考虑了量子计算机建模和非关联几何流和引力理论测试的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信