Investigation of mechanical and tribological behavior of Al-Ni-Co-MWCNT composites prepared by powder metallurgy technique

Rama Thirumurugan, M. Padmanaban, T. Ramkumar, D. Shanmugam
{"title":"Investigation of mechanical and tribological behavior of Al-Ni-Co-MWCNT composites prepared by powder metallurgy technique","authors":"Rama Thirumurugan, M. Padmanaban, T. Ramkumar, D. Shanmugam","doi":"10.1177/09544089241228942","DOIUrl":null,"url":null,"abstract":"The intended research is to improve the mechanical and tribological properties of Al-Ni-Co alloy by reinforcing the alloy with multiwall carbon nanotubes (MWCNT) using powder metallurgy. In this work MWCNT content varied from 0.5, 1.0, and 1.5 as wt. % and mixed with the Al-Ni-Co matrix. The composites are fabricated by cold compaction and conventional sintering technique. The presence of homogenous distribution was analyzed by using scanning electron microscope (SEM) with energy dispersive spectroscopy. The hardness of the composites was also explored by using Vickers' indentation and found that porosity plays a vital role and it directly influences the hardness and the mechanical properties. The wear behavior of the composites was measured using the Pin-on-Disc method at room temperature. The results revealed that 84.5Al-10Ni-4Co-1.5MWCNT possessed less volume loss (0.458 mm3) and coefficient of friction (0.45) compared to other samples. After wear analysis, the surface morphology was analyzed using SEM. The outcome of the research is MWCNT plays a vital role to improve the mechanical and tribological properties of Al-Ni-Co composites.","PeriodicalId":506108,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"85 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544089241228942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The intended research is to improve the mechanical and tribological properties of Al-Ni-Co alloy by reinforcing the alloy with multiwall carbon nanotubes (MWCNT) using powder metallurgy. In this work MWCNT content varied from 0.5, 1.0, and 1.5 as wt. % and mixed with the Al-Ni-Co matrix. The composites are fabricated by cold compaction and conventional sintering technique. The presence of homogenous distribution was analyzed by using scanning electron microscope (SEM) with energy dispersive spectroscopy. The hardness of the composites was also explored by using Vickers' indentation and found that porosity plays a vital role and it directly influences the hardness and the mechanical properties. The wear behavior of the composites was measured using the Pin-on-Disc method at room temperature. The results revealed that 84.5Al-10Ni-4Co-1.5MWCNT possessed less volume loss (0.458 mm3) and coefficient of friction (0.45) compared to other samples. After wear analysis, the surface morphology was analyzed using SEM. The outcome of the research is MWCNT plays a vital role to improve the mechanical and tribological properties of Al-Ni-Co composites.
粉末冶金技术制备的 Al-Ni-Co-MWCNT 复合材料的力学和摩擦学行为研究
本研究的目的是利用粉末冶金法用多壁碳纳米管 (MWCNT) 增强铝-镍-钴合金,从而改善其机械和摩擦学性能。在这项工作中,MWCNT 的重量百分比分别为 0.5、1.0 和 1.5,并与铝-镍-钴基体混合。复合材料是通过冷压实和传统烧结技术制成的。使用扫描电子显微镜(SEM)和能量色散光谱分析了复合材料的均匀分布。此外,还使用维氏压痕法检测了复合材料的硬度,发现孔隙率起着至关重要的作用,它直接影响着硬度和机械性能。在室温下,使用针盘法测量了复合材料的磨损行为。结果显示,与其他样品相比,84.5Al-10Ni-4Co-1.5MWCNT 的体积损失(0.458 立方毫米)和摩擦系数(0.45)更小。磨损分析后,使用扫描电镜分析了表面形态。研究结果表明,MWCNT 在改善铝-镍-钴复合材料的机械和摩擦学性能方面发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信