Impact of wall roughness elements type and height on heat transfer inside a cavity

Q3 Engineering
Issa Omle, A. Askar, Endre Kovács
{"title":"Impact of wall roughness elements type and height on heat transfer inside a cavity","authors":"Issa Omle, A. Askar, Endre Kovács","doi":"10.1556/606.2024.00986","DOIUrl":null,"url":null,"abstract":"This work investigates the effect of two wall roughness types, triangular and circular, on convection and radiation heat transfer in a small space. The ANSYS Fluent is used to do thermal and dynamic modeling; the left wall is warmer than the right one. The upper and lower walls are adiabatic. The Nusselt numbers are compared in all cases and for two Rayleigh values, which change based on the cavity's characteristic length. The results show temperature contours and Nusselt curves. It was observed that the roughness had a strong effect on the air's thermal behavior inside the cavity, where the Nusselt decreased in both roughness cases, especially at small heights. However, the largest decrease is in the triangular case and for angles less than 90°. For 72°, Nusselt is 13.32 and 6% less than smooth and circular cases respectively.","PeriodicalId":35003,"journal":{"name":"Pollack Periodica","volume":"42 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pollack Periodica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/606.2024.00986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates the effect of two wall roughness types, triangular and circular, on convection and radiation heat transfer in a small space. The ANSYS Fluent is used to do thermal and dynamic modeling; the left wall is warmer than the right one. The upper and lower walls are adiabatic. The Nusselt numbers are compared in all cases and for two Rayleigh values, which change based on the cavity's characteristic length. The results show temperature contours and Nusselt curves. It was observed that the roughness had a strong effect on the air's thermal behavior inside the cavity, where the Nusselt decreased in both roughness cases, especially at small heights. However, the largest decrease is in the triangular case and for angles less than 90°. For 72°, Nusselt is 13.32 and 6% less than smooth and circular cases respectively.
壁面粗糙度元素类型和高度对空腔内传热的影响
这项研究探讨了三角形和圆形两种墙壁粗糙度对狭小空间内对流和辐射传热的影响。ANSYS Fluent 用于热和动力学建模;左侧墙壁比右侧墙壁温暖。上墙和下墙是绝热的。比较了所有情况下的努塞尔特数和两个雷利值,这两个值根据空腔的特征长度而变化。结果显示了温度等值线和努塞尔特曲线。据观察,粗糙度对空腔内空气的热行为有很大影响,在两种粗糙度情况下,努塞尔特数都有所下降,特别是在高度较小的情况下。然而,在三角形情况下和角度小于 90° 时,降幅最大。对于 72° 的情况,努塞尔特分别比光滑和圆形情况低 13.32% 和 6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pollack Periodica
Pollack Periodica Engineering-Civil and Structural Engineering
CiteScore
1.50
自引率
0.00%
发文量
82
期刊介绍: Pollack Periodica is an interdisciplinary, peer-reviewed journal that provides an international forum for the presentation, discussion and dissemination of the latest advances and developments in engineering and informatics. Pollack Periodica invites papers reporting new research and applications from a wide range of discipline, including civil, mechanical, electrical, environmental, earthquake, material and information engineering. The journal aims at reaching a wider audience, not only researchers, but also those likely to be most affected by research results, for example designers, fabricators, specialists, developers, computer scientists managers in academic, governmental and industrial communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信