{"title":"Open‐domain event schema induction via weighted attentive hypergraph neural network","authors":"Wei Qin, Haozhe Jasper Wang, Xiangfeng Luo","doi":"10.1002/cpe.8029","DOIUrl":null,"url":null,"abstract":"Event schema refers to the use of a template to depict similar events, and it is a necessary prerequisite for event causality extractions. The induction of event schemas is a difficult task, especially for texts in the open domain, due to the complex and diverse manifestations of events. Previous models considered participants in event mentions are independent or compositional, ignoring the high‐order correlations among participants, which limit their capability of induce event schema. To remedy this, we propose constructing an Event Structure Hypergraph (ESH) to better utilizes the event structural information for event schema induction. In particular, we first extract event mentions from the open‐domain corpus. and then construct an ESH by representing event mentions as a hyperedges. ESH contains high‐order information between participants in event mention. To, learn event mentions representation based on ESH, we propose a weighted attentive hypergraph neural network (WHGNN) to model event high‐order correlations and then integrate node‐category weight matrix into the training of network by improving event representation. By applying jointly cluster algorithm on the event mentions representation, we can induce reliable event schemas. Experimental results on three datasets demonstrate that our approach can induce salient and high‐quality event schemas on open‐domain corpus.","PeriodicalId":10584,"journal":{"name":"Concurrency and Computation: Practice and Experience","volume":"81 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation: Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cpe.8029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Event schema refers to the use of a template to depict similar events, and it is a necessary prerequisite for event causality extractions. The induction of event schemas is a difficult task, especially for texts in the open domain, due to the complex and diverse manifestations of events. Previous models considered participants in event mentions are independent or compositional, ignoring the high‐order correlations among participants, which limit their capability of induce event schema. To remedy this, we propose constructing an Event Structure Hypergraph (ESH) to better utilizes the event structural information for event schema induction. In particular, we first extract event mentions from the open‐domain corpus. and then construct an ESH by representing event mentions as a hyperedges. ESH contains high‐order information between participants in event mention. To, learn event mentions representation based on ESH, we propose a weighted attentive hypergraph neural network (WHGNN) to model event high‐order correlations and then integrate node‐category weight matrix into the training of network by improving event representation. By applying jointly cluster algorithm on the event mentions representation, we can induce reliable event schemas. Experimental results on three datasets demonstrate that our approach can induce salient and high‐quality event schemas on open‐domain corpus.