Improved Deterministic Distributed Maximum Weight Independent Set Approximation in Sparse Graphs

Yuval Gil
{"title":"Improved Deterministic Distributed Maximum Weight Independent Set Approximation in Sparse Graphs","authors":"Yuval Gil","doi":"10.4230/LIPIcs.OPODIS.2023.16","DOIUrl":null,"url":null,"abstract":"We design new deterministic CONGEST approximation algorithms for \\emph{maximum weight independent set (MWIS)} in \\emph{sparse graphs}. As our main results, we obtain new $\\Delta(1+\\epsilon)$-approximation algorithms as well as algorithms whose approximation ratio depend strictly on $\\alpha$, in graphs with maximum degree $\\Delta$ and arboricity $\\alpha$. For (deterministic) $\\Delta(1+\\epsilon)$-approximation, the current state-of-the-art is due to a recent breakthrough by Faour et al.\\ [SODA 2023] that showed an $O(\\log^{2} (\\Delta W)\\cdot \\log (1/\\epsilon)+\\log ^{*}n)$-round algorithm, where $W$ is the largest node-weight (this bound translates to $O(\\log^{2} n\\cdot\\log (1/\\epsilon))$ under the common assumption that $W=\\text{poly}(n)$). As for $\\alpha$-dependent approximations, a deterministic CONGEST $(8(1+\\epsilon)\\cdot\\alpha)$-approximation algorithm with runtime $O(\\log^{3} n\\cdot\\log (1/\\epsilon))$ can be derived by combining the aforementioned algorithm of Faour et al.\\ with a method presented by Kawarabayashi et al.\\ [DISC 2020].","PeriodicalId":361168,"journal":{"name":"International Conference on Principles of Distributed Systems","volume":"41 8","pages":"16:1-16:20"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Principles of Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.OPODIS.2023.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We design new deterministic CONGEST approximation algorithms for \emph{maximum weight independent set (MWIS)} in \emph{sparse graphs}. As our main results, we obtain new $\Delta(1+\epsilon)$-approximation algorithms as well as algorithms whose approximation ratio depend strictly on $\alpha$, in graphs with maximum degree $\Delta$ and arboricity $\alpha$. For (deterministic) $\Delta(1+\epsilon)$-approximation, the current state-of-the-art is due to a recent breakthrough by Faour et al.\ [SODA 2023] that showed an $O(\log^{2} (\Delta W)\cdot \log (1/\epsilon)+\log ^{*}n)$-round algorithm, where $W$ is the largest node-weight (this bound translates to $O(\log^{2} n\cdot\log (1/\epsilon))$ under the common assumption that $W=\text{poly}(n)$). As for $\alpha$-dependent approximations, a deterministic CONGEST $(8(1+\epsilon)\cdot\alpha)$-approximation algorithm with runtime $O(\log^{3} n\cdot\log (1/\epsilon))$ can be derived by combining the aforementioned algorithm of Faour et al.\ with a method presented by Kawarabayashi et al.\ [DISC 2020].
稀疏图中的改进确定性分布式最大权重独立集逼近
我们为 \emph{sparse graphs} 中的\emph{maximum weight independent set (MWIS)} 设计了新的确定性 CONGEST 近似算法。作为我们的主要结果,我们得到了新的 $\Delta(1+\epsilon)$ 近似算法,以及在最大度为 $\Delta$ 和树状度为 $\alpha$ 的图中,其近似率严格依赖于 $\alpha$ 的算法。对于(确定性)$\Delta(1+\epsilon)$-逼近,目前的先进水平归功于 Faour 等人最近取得的突破。\ SODA 2023]展示了一种 $O(\log^{2} (\Delta W)\cdot\log (1/\epsilon)+\log ^{*}n)$ 轮算法,其中 $W$ 是最大的节点权重(在 $W=text{poly}(n)$ 的普通假设下,这一约束转化为 $O(\log^{2} n\cdot\log (1/\epsilon))$)。至于依赖于 $\alpha$ 的近似值,可以通过将上述 Faour 等人的算法与 Kawarabayashi 等人提出的方法[DISC 2020]相结合,得出运行时间为 $O(\log^{3} n\cdot\log (1/\epsilon))$ 的确定性 CONGEST $(8(1+\epsilon)\cdot\alpha)$ 近似算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信