{"title":"The Nexus Between Air Pollution and the COVID-19 Pandemic in Turkey: Further Insights from Wavelet Coherence Analysis","authors":"Erdinc Aladag","doi":"10.1007/s41810-023-00209-1","DOIUrl":null,"url":null,"abstract":"<div><p>The nexus of the ambient air quality and the COVID-19 pandemic is a topic that has attracted much attention and remains of current interest. The study area of Turkey is one of the countries with high case numbers, but there is no detailed investigation dealing with it in the literature. For this reason, the correlation and links between COVID-19 cases and deaths in Turkey with the air pollutants of PM<sub>10</sub>, PM<sub>2.5</sub>, SO<sub>2</sub>, CO, NO<sub>2</sub> and O<sub>3</sub> were determined between 1 April and 31 July 2021 using the statistical methods of cross-correlation and wavelet coherence analysis. According to the findings, for the COVID-19 pandemic parameters, there were positive significant correlations with PM<sub>2.5</sub>, SO<sub>2</sub>, CO, and NO<sub>2</sub> and an inverse significant correlation with O<sub>3</sub>. Although the wavelet transform is not convincing to suggest a standalone coherence, it reveals that air pollution and the spread and mortality of the pandemic in Turkey have short-term periods of co-movement. Additionally, it is notable that the national air quality improved during full lockdown periods in the country. The findings obtained in this study are expected to attract the attention of legislating and enforcing authorities and support more decisive steps being taken to reduce environmental pollutants and to control air pollution.</p></div>","PeriodicalId":36991,"journal":{"name":"Aerosol Science and Engineering","volume":"8 1","pages":"108 - 119"},"PeriodicalIF":1.6000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s41810-023-00209-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The nexus of the ambient air quality and the COVID-19 pandemic is a topic that has attracted much attention and remains of current interest. The study area of Turkey is one of the countries with high case numbers, but there is no detailed investigation dealing with it in the literature. For this reason, the correlation and links between COVID-19 cases and deaths in Turkey with the air pollutants of PM10, PM2.5, SO2, CO, NO2 and O3 were determined between 1 April and 31 July 2021 using the statistical methods of cross-correlation and wavelet coherence analysis. According to the findings, for the COVID-19 pandemic parameters, there were positive significant correlations with PM2.5, SO2, CO, and NO2 and an inverse significant correlation with O3. Although the wavelet transform is not convincing to suggest a standalone coherence, it reveals that air pollution and the spread and mortality of the pandemic in Turkey have short-term periods of co-movement. Additionally, it is notable that the national air quality improved during full lockdown periods in the country. The findings obtained in this study are expected to attract the attention of legislating and enforcing authorities and support more decisive steps being taken to reduce environmental pollutants and to control air pollution.
期刊介绍:
ASE is an international journal that publishes high-quality papers, communications, and discussion that advance aerosol science and engineering. Acceptable article forms include original research papers, review articles, letters, commentaries, news and views, research highlights, editorials, correspondence, and new-direction columns. ASE emphasizes the application of aerosol technology to both environmental and technical issues, and it provides a platform not only for basic research but also for industrial interests. We encourage scientists and researchers to submit papers that will advance our knowledge of aerosols and highlight new approaches for aerosol studies and new technologies for pollution control. ASE promotes cutting-edge studies of aerosol science and state-of-art instrumentation, but it is not limited to academic topics and instead aims to bridge the gap between basic science and industrial applications. ASE accepts papers covering a broad range of aerosol-related topics, including aerosol physical and chemical properties, composition, formation, transport and deposition, numerical simulation of air pollution incidents, chemical processes in the atmosphere, aerosol control technologies and industrial applications. In addition, ASE welcomes papers involving new and advanced methods and technologies that focus on aerosol pollution, sampling and analysis, including the invention and development of instrumentation, nanoparticle formation, nano technology, indoor and outdoor air quality monitoring, air pollution control, and air pollution remediation and feasibility assessments.