Analysis Of Poverty Level Mapping In Riau Province Using The K-Means Method

Erlisa Santri, Dede Brahma
{"title":"Analysis Of Poverty Level Mapping In Riau Province Using The K-Means Method","authors":"Erlisa Santri, Dede Brahma","doi":"10.59934/jaiea.v3i2.414","DOIUrl":null,"url":null,"abstract":"This research aims to understand the pattern of poverty distribution in Riau Province, identify clusters that reflect similar characteristics and provide a basis for developing more targeted policies. This approach uses machine learning techniques, especially the K-Means algorithm, to form clusters based on poverty level data. The results of the analysis show cluster 0 (C0) with a high poverty level and cluster 1 (C1) with a low poverty level. K-Means proved effective in grouping areas with similar levels of poverty, and provided a strong foundation for further analysis. Evaluation results using the Adjusted Rand Index (ARI), Silhouette Score, Davies-Bouldin Index, and Calinski-Harabasz Index show that the quality of cluster formation is good. This analysis provides detailed insight into poverty patterns in Riau Province and provides an empirical basis for implementing more contextual policies.","PeriodicalId":320979,"journal":{"name":"Journal of Artificial Intelligence and Engineering Applications (JAIEA)","volume":"33 39","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Engineering Applications (JAIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59934/jaiea.v3i2.414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research aims to understand the pattern of poverty distribution in Riau Province, identify clusters that reflect similar characteristics and provide a basis for developing more targeted policies. This approach uses machine learning techniques, especially the K-Means algorithm, to form clusters based on poverty level data. The results of the analysis show cluster 0 (C0) with a high poverty level and cluster 1 (C1) with a low poverty level. K-Means proved effective in grouping areas with similar levels of poverty, and provided a strong foundation for further analysis. Evaluation results using the Adjusted Rand Index (ARI), Silhouette Score, Davies-Bouldin Index, and Calinski-Harabasz Index show that the quality of cluster formation is good. This analysis provides detailed insight into poverty patterns in Riau Province and provides an empirical basis for implementing more contextual policies.
使用 K-Means 方法分析廖内省的贫困程度分布图
本研究旨在了解廖内省的贫困分布模式,找出反映相似特征的聚类,为制定更有针对性的政策提供依据。该方法利用机器学习技术,特别是 K-Means 算法,根据贫困水平数据形成聚类。分析结果显示,第 0 组(C0)贫困程度较高,第 1 组(C1)贫困程度较低。事实证明,K-Means 能有效地将贫困程度相似的地区分组,为进一步分析奠定了坚实的基础。使用调整后兰德指数 (ARI)、剪影得分、戴维斯-博尔丁指数和卡林斯基-哈拉巴什指数进行的评估结果表明,聚类形成的质量良好。这项分析提供了对廖内省贫困模式的详细了解,并为实施更多因地制宜的政策提供了经验基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信