Effect of Crystallization Properties of Continuous Basalt Fibers on Thermal Stability of Composite Materials

S. Ivanitskii, Yurii Chuvashov
{"title":"Effect of Crystallization Properties of Continuous Basalt Fibers on Thermal Stability of Composite Materials","authors":"S. Ivanitskii, Yurii Chuvashov","doi":"10.4028/p-unbrc9","DOIUrl":null,"url":null,"abstract":"The thermal stability of composite materials based on basalt fibers is determined by the strength of fibers under thermal stress. The decrease in strength occurs due to the crystallization of the original fibers and the development of microcrystalline nuclei in them during heating. Experimental studies of the influence of the processing temperature of continuous basalt fibers on their strength have been carried out. It has been established that the strength of fibers during their heat treatment up to 400оС decreases by 25 % from the initial one. At the temperature of approximately 500оС, the strength of the fibers is almost half. At 600оС, the fiber strength is 20 % of the initial strength. At a processing temperature of 700оС, the fiber is completely destroyed. The main reasons for the decrease in fiber strength are the development of microcrystalline nuclei that have formed in the fibers at the drawing stage in the crystallization zone. From above, this zone is determined by the temperature of the upper limit of melt crystallization, and from below it is limited by the glass transition temperature. The residence time of the melt in this range is the crystallization time. Calculations the speed of movement and the cooling rate of the melt stream during fiber drawing were carried out, which made it possible to determine the temperature zone and time of crystallization. The results of theoretical studies have shown that for the production of fibers used in composites, it is necessary to select such basalts and conditions for the fiber drawing, under which the values of the temperature zone and time of crystallization will be the smallest.","PeriodicalId":507742,"journal":{"name":"Materials Science Forum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-unbrc9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The thermal stability of composite materials based on basalt fibers is determined by the strength of fibers under thermal stress. The decrease in strength occurs due to the crystallization of the original fibers and the development of microcrystalline nuclei in them during heating. Experimental studies of the influence of the processing temperature of continuous basalt fibers on their strength have been carried out. It has been established that the strength of fibers during their heat treatment up to 400оС decreases by 25 % from the initial one. At the temperature of approximately 500оС, the strength of the fibers is almost half. At 600оС, the fiber strength is 20 % of the initial strength. At a processing temperature of 700оС, the fiber is completely destroyed. The main reasons for the decrease in fiber strength are the development of microcrystalline nuclei that have formed in the fibers at the drawing stage in the crystallization zone. From above, this zone is determined by the temperature of the upper limit of melt crystallization, and from below it is limited by the glass transition temperature. The residence time of the melt in this range is the crystallization time. Calculations the speed of movement and the cooling rate of the melt stream during fiber drawing were carried out, which made it possible to determine the temperature zone and time of crystallization. The results of theoretical studies have shown that for the production of fibers used in composites, it is necessary to select such basalts and conditions for the fiber drawing, under which the values of the temperature zone and time of crystallization will be the smallest.
连续玄武岩纤维的结晶特性对复合材料热稳定性的影响
基于玄武岩纤维的复合材料的热稳定性取决于纤维在热应力下的强度。强度降低的原因是原始纤维在加热过程中结晶,并在其中形成微晶核。对连续玄武岩纤维的加工温度对其强度的影响进行了实验研究。结果表明,热处理温度达到 400оС 时,纤维强度比初始强度降低 25%。在温度约为 500оС时,纤维强度几乎减半。在 600оС时,纤维强度为初始强度的 20%。加工温度达到 700оС时,纤维完全被破坏。纤维强度下降的主要原因是纤维在拉丝阶段在结晶区形成的微晶核的发展。从上往下看,结晶区由熔体结晶上限温度决定,从下往上看,结晶区受到玻璃化转变温度的限制。熔体在此范围内的停留时间即为结晶时间。通过计算纤维拉伸过程中熔体流的运动速度和冷却速度,可以确定结晶的温度区域和时间。理论研究结果表明,在生产用于复合材料的纤维时,有必要选择这种玄武岩和纤维拉拔条件,在这种条件下,结晶温度区和结晶时间的值将最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信