{"title":"Increasing the Length of Concrete Pavement Slabs Using Shrinkage Reducing Admixture and Polypropylene Fiber","authors":"","doi":"10.1186/s40069-023-00647-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Pavement engineers frequently employ concrete pavements because of their benefits such as extended lifetime, superior performance and durability, and so on. However, there are some disadvantages of these pavements such as shrinkage which may lead to cracking, warping, and limiting the length of the concrete pavement slabs. Shrinkage reducing admixture (SRA) and polypropylene fibers can be employed to prevent or control shrinkage cracking. In this study, increasing the length of concrete pavement slabs using shrinkage reducing admixture and polypropylene fiber was investigated. For mix compositions, two water–cement ratios of 0.35 and 0.4 were employed, and the percentages of SRA and polypropylene fiber utilized in mixes were 2% and 1% by weight of cement, respectively. Slump, compressive strength, third point flexural strength, electrical resistance, free and restrained shrinkage tests were carried out as the experimental programming to investigate the effect of these materials on concrete behavior and evaluate the amount of concrete pavement design parameters. Statistical analysis and RSM were used to determine the significance of each parameter and their interactions on concrete properties. It was observed that the use of SRA had no influence on workability; however, polypropylene fibers reduced the slump flow of concrete. Also, the use of SRA resulted in a decrease in mechanical properties. In addition, the use of polypropylene fibers considerably enhanced the energy absorption of concrete. Furthermore, on concrete containing SRA and polypropylene fiber, the magnitude of free and restrained shrinkage and crack width were reduced. Finally, the length and thickness of concrete pavement slabs were evaluated using the experimental results on the Tehran-Shomal freeway as a case study. The slab length could be increased by about 20% without any significant change in the slab thickness using SRA and polypropylene fiber in concrete mix composition. This can lead to an increase in construction speed, improve the durability of pavement and generally increase the quality of the concrete pavement.</p>","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40069-023-00647-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pavement engineers frequently employ concrete pavements because of their benefits such as extended lifetime, superior performance and durability, and so on. However, there are some disadvantages of these pavements such as shrinkage which may lead to cracking, warping, and limiting the length of the concrete pavement slabs. Shrinkage reducing admixture (SRA) and polypropylene fibers can be employed to prevent or control shrinkage cracking. In this study, increasing the length of concrete pavement slabs using shrinkage reducing admixture and polypropylene fiber was investigated. For mix compositions, two water–cement ratios of 0.35 and 0.4 were employed, and the percentages of SRA and polypropylene fiber utilized in mixes were 2% and 1% by weight of cement, respectively. Slump, compressive strength, third point flexural strength, electrical resistance, free and restrained shrinkage tests were carried out as the experimental programming to investigate the effect of these materials on concrete behavior and evaluate the amount of concrete pavement design parameters. Statistical analysis and RSM were used to determine the significance of each parameter and their interactions on concrete properties. It was observed that the use of SRA had no influence on workability; however, polypropylene fibers reduced the slump flow of concrete. Also, the use of SRA resulted in a decrease in mechanical properties. In addition, the use of polypropylene fibers considerably enhanced the energy absorption of concrete. Furthermore, on concrete containing SRA and polypropylene fiber, the magnitude of free and restrained shrinkage and crack width were reduced. Finally, the length and thickness of concrete pavement slabs were evaluated using the experimental results on the Tehran-Shomal freeway as a case study. The slab length could be increased by about 20% without any significant change in the slab thickness using SRA and polypropylene fiber in concrete mix composition. This can lead to an increase in construction speed, improve the durability of pavement and generally increase the quality of the concrete pavement.
期刊介绍:
The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on
Properties and performance of concrete and concrete structures
Advanced and improved experimental techniques
Latest modelling methods
Possible improvement and enhancement of concrete properties
Structural and microstructural characterization
Concrete applications
Fiber reinforced concrete technology
Concrete waste management.