Harmonic Hierarchies for Polynomial Optimization

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Sergio Cristancho, Mauricio Velasco
{"title":"Harmonic Hierarchies for Polynomial Optimization","authors":"Sergio Cristancho, Mauricio Velasco","doi":"10.1137/22m1484511","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 1, Page 590-615, March 2024. <br/> Abstract. We introduce novel polyhedral approximation hierarchies for the cone of nonnegative forms on the unit sphere in [math] and for its (dual) cone of moments. We prove computable quantitative bounds on the speed of convergence of such hierarchies. We also introduce a novel optimization-free algorithm for building converging sequences of lower bounds for polynomial minimization problems on spheres. Finally, some computational results are discussed, showcasing our implementation of these hierarchies in the programming language Julia.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":"8 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1484511","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Optimization, Volume 34, Issue 1, Page 590-615, March 2024.
Abstract. We introduce novel polyhedral approximation hierarchies for the cone of nonnegative forms on the unit sphere in [math] and for its (dual) cone of moments. We prove computable quantitative bounds on the speed of convergence of such hierarchies. We also introduce a novel optimization-free algorithm for building converging sequences of lower bounds for polynomial minimization problems on spheres. Finally, some computational results are discussed, showcasing our implementation of these hierarchies in the programming language Julia.
用于多项式优化的谐波层次结构
SIAM 优化期刊》第 34 卷第 1 期第 590-615 页,2024 年 3 月。 摘要我们为[math]中单位球上的非负形式锥及其(对偶)矩锥引入了新的多面体近似层次。我们证明了这种层次收敛速度的可计算定量边界。我们还介绍了一种新颖的免优化算法,用于为球面上的多项式最小化问题建立收敛的下界序列。最后,我们讨论了一些计算结果,并展示了我们在编程语言 Julia 中对这些层次结构的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信