{"title":"Finite element analysis megatrends: A road less traveled","authors":"Arun Y. Patil, Tanmay Kundu, Raman Kumar","doi":"10.1002/cae.22721","DOIUrl":null,"url":null,"abstract":"<p>In today's environment, finite element analysis is crucial for Mechanical Engineers. In today's highly competitive industries, graduates need to be productive from Day one as they enter the industry. To meet the vast range of industrial requirements or even for higher education, education institutes must adhere to an industry enabled curriculum as defined in collaboration with industry employees. As students reach their prefinal year of mechanical engineering studies, they will encounter courses like finite element analysis, design of machine elements, and failure analysis in design, which will serve as foundation steps for their future careers. As students need to compete in the real world, it becomes imperative to have a thorough understanding of both theoretical and practical issues. The focus of current work is to provide them a platform to think as a real-time problem-solving engineer to address the society-based problems and how he/she approaches the problem in an optimized way and finally, convert the entire work to tangible documents in the form of research articles. Since 2018, a new vertical called as “advanced computer aided engineering (CAE)” has emerged to link and prepare people for the business. In the realm of finite element method (FEM) theoretical and allied laboratory work, the current study discusses sustainability while selecting the problem statement. The entire emphasis is on eco-environment with nature's sustainability along with the go-green concept in terms of materials, design, optimization, cost, quality, and so on. The present work includes several new features that were not present in the previous curriculum, such as transforming the work to high-quality journals, student feedback, subscription-based journal selection for the manuscript, and embedding experimental and analytical work alongside simulation studies. This time, 40 teams participated, with around 36 project works being qualified for publication in prestigious journals and 8–10 works being filed for Indian patents. In terms of quality and quantity of work completed, this is the best output attained in contrast to previous iterations. Because of the increasing growth rate of higher education, our students have been able to get into Top 100 QS ranked universities. The figures show that because of faculty involvement in the FEM lab, Advanced CAE I, and Advanced CAE II, over the previous 4–5 years, students were able to publish more than 50 publications in prestigious peer-reviewed International/National Journals and Conference papers.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cae.22721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In today's environment, finite element analysis is crucial for Mechanical Engineers. In today's highly competitive industries, graduates need to be productive from Day one as they enter the industry. To meet the vast range of industrial requirements or even for higher education, education institutes must adhere to an industry enabled curriculum as defined in collaboration with industry employees. As students reach their prefinal year of mechanical engineering studies, they will encounter courses like finite element analysis, design of machine elements, and failure analysis in design, which will serve as foundation steps for their future careers. As students need to compete in the real world, it becomes imperative to have a thorough understanding of both theoretical and practical issues. The focus of current work is to provide them a platform to think as a real-time problem-solving engineer to address the society-based problems and how he/she approaches the problem in an optimized way and finally, convert the entire work to tangible documents in the form of research articles. Since 2018, a new vertical called as “advanced computer aided engineering (CAE)” has emerged to link and prepare people for the business. In the realm of finite element method (FEM) theoretical and allied laboratory work, the current study discusses sustainability while selecting the problem statement. The entire emphasis is on eco-environment with nature's sustainability along with the go-green concept in terms of materials, design, optimization, cost, quality, and so on. The present work includes several new features that were not present in the previous curriculum, such as transforming the work to high-quality journals, student feedback, subscription-based journal selection for the manuscript, and embedding experimental and analytical work alongside simulation studies. This time, 40 teams participated, with around 36 project works being qualified for publication in prestigious journals and 8–10 works being filed for Indian patents. In terms of quality and quantity of work completed, this is the best output attained in contrast to previous iterations. Because of the increasing growth rate of higher education, our students have been able to get into Top 100 QS ranked universities. The figures show that because of faculty involvement in the FEM lab, Advanced CAE I, and Advanced CAE II, over the previous 4–5 years, students were able to publish more than 50 publications in prestigious peer-reviewed International/National Journals and Conference papers.