Limit theorems for linear processes with tapered innovations and filters

Pub Date : 2024-02-16 DOI:10.1007/s10986-024-09619-1
{"title":"Limit theorems for linear processes with tapered innovations and filters","authors":"","doi":"10.1007/s10986-024-09619-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We consider the partial-sum process <span> <span>\\({\\sum }_{k=1}^{\\left[nt\\right]}{X}_{k}^{\\left(n\\right)},\\)</span> </span> where <span> <span>\\(\\left\\{{X}_{k}^{\\left(n\\right)}={\\sum }_{j=0}^{\\infty }{\\alpha }_{j}^{\\left(n\\right)}{\\xi }_{k-j}\\left(b\\left(n\\right)\\right), k\\in {\\mathbb{Z}}\\right\\},\\)</span> </span> <em>n</em> ≥ 1, is a series of linear processes with tapered filter <span> <span>\\({\\alpha }_{j}^{\\left(n\\right)}={\\alpha }_{j} {1}_{\\left\\{0\\le j\\le\\lambda\\left(n\\right)\\right\\}}\\)</span> </span> and heavy-tailed tapered innovations <em>ξ</em><sub><em>j</em></sub>(<em>b</em>(<em>n</em>)), <em>j ∈</em> Z. Both tapering parameters <em>b</em>(<em>n</em>) and <em>⋋</em> (<em>n</em>) grow to <em>∞</em> as <em>n→∞</em>. The limit behavior of the partial-sum process (in the sense of convergence of finite-dimensional distributions) depends on the growth of these two tapering parameters and dependence properties of a linear process with nontapered filter <em>a</em><sub><em>i</em></sub>, <em>i</em> ≥ 0, and nontapered innovations. We consider the cases where <em>b</em>(<em>n</em>) grows relatively slowly (soft tapering) and rapidly (hard tapering) and all three cases of growth of <em>⋋</em>(<em>n</em>) (strong, weak, and moderate tapering).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-024-09619-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the partial-sum process \({\sum }_{k=1}^{\left[nt\right]}{X}_{k}^{\left(n\right)},\) where \(\left\{{X}_{k}^{\left(n\right)}={\sum }_{j=0}^{\infty }{\alpha }_{j}^{\left(n\right)}{\xi }_{k-j}\left(b\left(n\right)\right), k\in {\mathbb{Z}}\right\},\) n ≥ 1, is a series of linear processes with tapered filter \({\alpha }_{j}^{\left(n\right)}={\alpha }_{j} {1}_{\left\{0\le j\le\lambda\left(n\right)\right\}}\) and heavy-tailed tapered innovations ξj(b(n)), j ∈ Z. Both tapering parameters b(n) and (n) grow to as n→∞. The limit behavior of the partial-sum process (in the sense of convergence of finite-dimensional distributions) depends on the growth of these two tapering parameters and dependence properties of a linear process with nontapered filter ai, i ≥ 0, and nontapered innovations. We consider the cases where b(n) grows relatively slowly (soft tapering) and rapidly (hard tapering) and all three cases of growth of (n) (strong, weak, and moderate tapering).

分享
查看原文
具有锥形创新和滤波器的线性过程的极限定理
Abstract We consider the partial-sum process \({\sum }_{k=1}^{left[nt\right]}{X}_{k}^{left(n\right)}、\其中 \(left\{X}_{k}^{left(n\right)}={sum }_{j=0}^{infty } {alpha }_{j}^{left(n\right)}{xi }_{k-j}\left(b\left(n\right)\right)、kin {\mathbb{Z}}\right\},\) n ≥ 1、是一系列线性过程,具有锥形滤波器 \({\alpha }_{j}^{left(n\right)}={\alpha }_{j} {1}_{\left\{0le jle\lambda\left(n\right)\right}}) 和重尾锥形创新 ξj(b(n)), j∈ Z。当 n→∞ 时,锥形参数 b(n) 和 ⋋ (n) 都增长到 ∞。偏和过程的极限行为(在有限维分布收敛的意义上)取决于这两个渐减参数的增长,以及具有非渐减滤波 ai、i ≥ 0 和非渐减创新的线性过程的依赖特性。我们考虑了 b(n)增长相对较慢(软渐缩)和较快(硬渐缩)的情况,以及⋋(n)增长的所有三种情况(强渐缩、弱渐缩和适度渐缩)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信