On Bayesian predictive density estimation for skew-normal distributions

Pub Date : 2024-02-17 DOI:10.1007/s00184-024-00946-4
Othmane Kortbi
{"title":"On Bayesian predictive density estimation for skew-normal distributions","authors":"Othmane Kortbi","doi":"10.1007/s00184-024-00946-4","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with prediction for skew-normal models, and more specifically the Bayes estimation of a predictive density for <span>\\(Y \\left. \\right| \\mu \\sim {\\mathcal {S}} {\\mathcal {N}}_p (\\mu , v_y I_p, \\lambda )\\)</span> under Kullback–Leibler loss, based on <span>\\(X \\left. \\right| \\mu \\sim {\\mathcal {S}} {\\mathcal {N}}_p (\\mu , v_x I_p, \\lambda )\\)</span> with known dependence and skewness parameters. We obtain representations for Bayes predictive densities, including the minimum risk equivariant predictive density <span>\\(\\hat{p}_{\\pi _{o}}\\)</span> which is a Bayes predictive density with respect to the noninformative prior <span>\\(\\pi _0\\equiv 1\\)</span>. George et al. (Ann Stat 34:78–91, 2006) used the parallel between the problem of point estimation and the problem of estimation of predictive densities to establish a connection between the difference of risks of the two problems. The development of similar connection, allows us to determine sufficient conditions of dominance over <span>\\(\\hat{p}_{\\pi _{o}}\\)</span> and of minimaxity. First, we show that <span>\\(\\hat{p}_{\\pi _{o}}\\)</span> is a minimax predictive density under KL risk for the skew-normal model. After this, for dimensions <span>\\(p\\ge 3\\)</span>, we obtain classes of Bayesian minimax densities that improve <span>\\(\\hat{p}_{\\pi _{o}}\\)</span> under KL loss, for the subclass of skew-normal distributions with small value of skewness parameter. Moreover, for dimensions <span>\\(p\\ge 4\\)</span>, we obtain classes of Bayesian minimax densities that improve <span>\\(\\hat{p}_{\\pi _{o}}\\)</span> under KL loss, for the whole class of skew-normal distributions. Examples of proper priors, including generalized student priors, generating Bayesian minimax densities that improve <span>\\(\\hat{p}_{\\pi _{o}}\\)</span> under KL loss, were constructed when <span>\\(p\\ge 5\\)</span>. This findings represent an extension of Liang and Barron (IEEE Trans Inf Theory 50(11):2708–2726, 2004), George et al. (Ann Stat 34:78–91, 2006) and Komaki (Biometrika 88(3):859–864, 2001) results to a subclass of asymmetrical distributions.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-024-00946-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with prediction for skew-normal models, and more specifically the Bayes estimation of a predictive density for \(Y \left. \right| \mu \sim {\mathcal {S}} {\mathcal {N}}_p (\mu , v_y I_p, \lambda )\) under Kullback–Leibler loss, based on \(X \left. \right| \mu \sim {\mathcal {S}} {\mathcal {N}}_p (\mu , v_x I_p, \lambda )\) with known dependence and skewness parameters. We obtain representations for Bayes predictive densities, including the minimum risk equivariant predictive density \(\hat{p}_{\pi _{o}}\) which is a Bayes predictive density with respect to the noninformative prior \(\pi _0\equiv 1\). George et al. (Ann Stat 34:78–91, 2006) used the parallel between the problem of point estimation and the problem of estimation of predictive densities to establish a connection between the difference of risks of the two problems. The development of similar connection, allows us to determine sufficient conditions of dominance over \(\hat{p}_{\pi _{o}}\) and of minimaxity. First, we show that \(\hat{p}_{\pi _{o}}\) is a minimax predictive density under KL risk for the skew-normal model. After this, for dimensions \(p\ge 3\), we obtain classes of Bayesian minimax densities that improve \(\hat{p}_{\pi _{o}}\) under KL loss, for the subclass of skew-normal distributions with small value of skewness parameter. Moreover, for dimensions \(p\ge 4\), we obtain classes of Bayesian minimax densities that improve \(\hat{p}_{\pi _{o}}\) under KL loss, for the whole class of skew-normal distributions. Examples of proper priors, including generalized student priors, generating Bayesian minimax densities that improve \(\hat{p}_{\pi _{o}}\) under KL loss, were constructed when \(p\ge 5\). This findings represent an extension of Liang and Barron (IEEE Trans Inf Theory 50(11):2708–2726, 2004), George et al. (Ann Stat 34:78–91, 2006) and Komaki (Biometrika 88(3):859–864, 2001) results to a subclass of asymmetrical distributions.

分享
查看原文
关于倾斜正态分布的贝叶斯预测密度估计
本文关注偏态模型的预测,更具体地说,是对\(Y \left. \right| \mu \sim {\mathcal {S}} 的预测密度进行贝叶斯估计。\right| \mu \sim {\mathcal {S}}{mathcal {N}}_p (\mu , v_y I_p, \lambda )\) under Kullback-Leibler loss, based on \(X (left.\right| \mu \sim {\mathcal {S}}{mathcal {N}}_p (\mu , v_x I_p, \lambda )\) 与已知的依赖性和偏度参数。我们得到了贝叶斯预测密度的表示方法,包括最小风险等变预测密度(\hat{p}_{\pi _{o}}\),它是相对于非信息先验的贝叶斯预测密度(\pi _0\equiv 1\)。George 等人(Ann Stat 34:78-91, 2006)利用点估计问题与预测密度估计问题之间的平行关系,在这两个问题的风险差异之间建立了联系。类似联系的发展使我们能够确定支配(\hat{p}_{pi _{o}})和最小性的充分条件。首先,我们证明了\(hat{p}_{pi _{o}}/)是偏正态模型 KL 风险下的最小预测密度。之后,对于偏度参数值较小的偏正态分布子类,我们得到了贝叶斯最小密度的类别,这些密度在KL损失下改善了\(\hat{p}_{pi _{o}}\)。此外,对于维数 \(p\ge 4\), 我们得到了贝叶斯最小密度的类别,这些密度在 KL 损失下改善了整个偏态正态分布类别的 \(hat{p}_{pi _{o}}\) 。当\(p\ge 5\) 时,构建了适当先验(包括广义学生先验)的例子,这些先验产生了贝叶斯最小密度,在KL损失下改善了\(\hat{p}_{pi _{o}}\)。这一发现是Liang和Barron(IEEE Trans Inf Theory 50(11):2708-2726,2004)、George等人(Ann Stat 34:78-91,2006)和Komaki(Biometrika 88(3):859-864,2001)的结果在非对称分布子类上的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信