{"title":"A note on Lototsky–Bernstein bases","authors":"Xiao-Wei Xu, Xin Yu, Jia-Lin Cui, Qing-Bo Cai, Wen-Tao Cheng","doi":"10.1186/s13660-024-03076-7","DOIUrl":null,"url":null,"abstract":"In this note, we study some approximation properties on a class of special Lototsky–Bernstein bases. We focus on approximation of $|x|$ on $[-1,1]$ by an approximation process generated from fixed points on Lototsky–Bernstein bases. Our first result shows that the approximation procedure $p_{n}(x)$ to $|x|$ preserves good shapes on $[-1,1]$ . Moreover, some convergence results and inequalities are derived. Our second main result states that the rate convergence of the approximation is $O(n^{-2})$ .","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"39 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03076-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this note, we study some approximation properties on a class of special Lototsky–Bernstein bases. We focus on approximation of $|x|$ on $[-1,1]$ by an approximation process generated from fixed points on Lototsky–Bernstein bases. Our first result shows that the approximation procedure $p_{n}(x)$ to $|x|$ preserves good shapes on $[-1,1]$ . Moreover, some convergence results and inequalities are derived. Our second main result states that the rate convergence of the approximation is $O(n^{-2})$ .
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.