A note on Lototsky–Bernstein bases

IF 1.5 3区 数学 Q1 MATHEMATICS
Xiao-Wei Xu, Xin Yu, Jia-Lin Cui, Qing-Bo Cai, Wen-Tao Cheng
{"title":"A note on Lototsky–Bernstein bases","authors":"Xiao-Wei Xu, Xin Yu, Jia-Lin Cui, Qing-Bo Cai, Wen-Tao Cheng","doi":"10.1186/s13660-024-03076-7","DOIUrl":null,"url":null,"abstract":"In this note, we study some approximation properties on a class of special Lototsky–Bernstein bases. We focus on approximation of $|x|$ on $[-1,1]$ by an approximation process generated from fixed points on Lototsky–Bernstein bases. Our first result shows that the approximation procedure $p_{n}(x)$ to $|x|$ preserves good shapes on $[-1,1]$ . Moreover, some convergence results and inequalities are derived. Our second main result states that the rate convergence of the approximation is $O(n^{-2})$ .","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"39 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03076-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this note, we study some approximation properties on a class of special Lototsky–Bernstein bases. We focus on approximation of $|x|$ on $[-1,1]$ by an approximation process generated from fixed points on Lototsky–Bernstein bases. Our first result shows that the approximation procedure $p_{n}(x)$ to $|x|$ preserves good shapes on $[-1,1]$ . Moreover, some convergence results and inequalities are derived. Our second main result states that the rate convergence of the approximation is $O(n^{-2})$ .
关于洛托茨基-伯恩斯坦基的说明
在本论文中,我们将研究一类特殊 Lototsky-Bernstein 基的近似性质。我们的重点是通过由 Lototsky-Bernstein 基上的定点生成的近似过程来近似 $[-1,1]$[-1,1]$ 上的 $|x|$。我们的第一个结果表明,$p_{n}(x)$ 对 $|x|$ 的逼近过程保留了 $[-1,1]$ 上的良好形状。此外,我们还得出了一些收敛结果和不等式。我们的第二个主要结果表明,近似的收敛速率为 $O(n^{-2})$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
6.20%
发文量
136
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信