Muhammad Hashim, Muhammad Usman, Sohail Ahmad, Rasool Shah, Atizaz Ali, Naveed Ur Rahman
{"title":"ZnO/NiO Nanocomposite with Enhanced Photocatalytic H2 Production","authors":"Muhammad Hashim, Muhammad Usman, Sohail Ahmad, Rasool Shah, Atizaz Ali, Naveed Ur Rahman","doi":"10.1155/2024/2676368","DOIUrl":null,"url":null,"abstract":"Inorganic photocatalytic materials exhibiting a highly efficient response to ultraviolet-visible light spectrum have become a subject of widespread global interest. They offer a substantial prospect for generating green energy and mitigating water pollution. Zinc oxide (ZnO), among various semiconductors, proves advantageous for water-splitting applications due to its elevated reactivity, chemical stability, and nontoxic nature. However, its efficacy as a photocatalyst is hindered by limited light absorption capacity and swift charge carrier recombination. To improve charge separation and enhance responsiveness to ultraviolet-visible light photocatalysis, the formation of a heterojunction with another suitable semiconductor is beneficial. Thus, we employed hydrothermal route for the synthesis of the samples, which is a high-pressure method. The formations of ZnO/NiO heterostructures were revealed by scanning electron microscopy, X-ray diffraction analysis, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. The nanocomposites were discovered to have a substantially higher photocatalytic activity for the generation of H<sub>2</sub>. The H<sub>2</sub> production rates show that ZnO (i.e., 168.91 <svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.34167 9.39034\" width=\"7.34167pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>molg<sup>-1</sup> h<sup>-1</sup>) exhibits good H<sub>2</sub> production rates as compared to NiO (i.e., 135.74 <svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.34167 9.39034\" width=\"7.34167pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-234\"></use></g></svg>molg<sup>-1</sup> h<sup>-1</sup>). The best production rates were observed for ZN-30 (i.e., 247.56 <svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.34167 9.39034\" width=\"7.34167pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-234\"></use></g></svg>molg<sup>-1</sup> h<sup>-1</sup>) which is 1.46 times greater than ZnO and 1.82 times greater than NiO. This enhanced photocatalytic activity for ZN-30 is because of the good electron-hole pair separation due to the formation of depletion layer, suppression of fast charge recombination, and overcoming resistance corrosion.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":"10 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/2676368","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Inorganic photocatalytic materials exhibiting a highly efficient response to ultraviolet-visible light spectrum have become a subject of widespread global interest. They offer a substantial prospect for generating green energy and mitigating water pollution. Zinc oxide (ZnO), among various semiconductors, proves advantageous for water-splitting applications due to its elevated reactivity, chemical stability, and nontoxic nature. However, its efficacy as a photocatalyst is hindered by limited light absorption capacity and swift charge carrier recombination. To improve charge separation and enhance responsiveness to ultraviolet-visible light photocatalysis, the formation of a heterojunction with another suitable semiconductor is beneficial. Thus, we employed hydrothermal route for the synthesis of the samples, which is a high-pressure method. The formations of ZnO/NiO heterostructures were revealed by scanning electron microscopy, X-ray diffraction analysis, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. The nanocomposites were discovered to have a substantially higher photocatalytic activity for the generation of H2. The H2 production rates show that ZnO (i.e., 168.91 molg-1 h-1) exhibits good H2 production rates as compared to NiO (i.e., 135.74 molg-1 h-1). The best production rates were observed for ZN-30 (i.e., 247.56 molg-1 h-1) which is 1.46 times greater than ZnO and 1.82 times greater than NiO. This enhanced photocatalytic activity for ZN-30 is because of the good electron-hole pair separation due to the formation of depletion layer, suppression of fast charge recombination, and overcoming resistance corrosion.
期刊介绍:
International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge.
The journal covers the following topics and applications:
- Photocatalysis
- Photostability and Toxicity of Drugs and UV-Photoprotection
- Solar Energy
- Artificial Light Harvesting Systems
- Photomedicine
- Photo Nanosystems
- Nano Tools for Solar Energy and Photochemistry
- Solar Chemistry
- Photochromism
- Organic Light-Emitting Diodes
- PV Systems
- Nano Structured Solar Cells