{"title":"Interrogating Random and Systematic Measurement Error in Morphometric Data","authors":"Michael L. Collyer, Dean C. Adams","doi":"10.1007/s11692-024-09627-6","DOIUrl":null,"url":null,"abstract":"<p>Measurement error is present in all quantitative studies, and ensuring proper biological inference requires that the effects of measurement error are fully scrutinized, understood, and to the extent possible, minimized. For morphometric data, measurement error is often evaluated from descriptive statistics that find ratios of subject or within-subject variance to total variance for a set of data comprising repeated measurements on the same research subjects. These descriptive statistics do not typically distinguish between random and systematic components of measurement error, even though the presence of the latter (even in small proportions) can have consequences for downstream biological inferences. Furthermore, merely sampling from subjects that are quite morphologically dissimilar can give the incorrect impression that measurement error (and its negative effects) are unimportant. We argue that a formal hypothesis-testing framework for measurement error in morphometric data is lacking. We propose a suite of new analytical methods and graphical tools that more fully interrogate measurement error, by disentangling its random and systematic components, and evaluating any group-specific systematic effects. Through the analysis of simulated and empirical data sets we demonstrate that our procedures properly parse components of measurement error, and characterize the extent to which they permeate variation in a sample of observations. We further confirm that traditional approaches with repeatability statistics are unable to discern these patterns, improperly assuaging potential concerns. We recommend that the approaches developed here become part of the current analytical paradigm in geometric morphometric studies. The new methods are made available in the <span>RRPP</span> and <span>geomorph</span> <span>R</span>-packages.</p>","PeriodicalId":50471,"journal":{"name":"Evolutionary Biology","volume":"3 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11692-024-09627-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Measurement error is present in all quantitative studies, and ensuring proper biological inference requires that the effects of measurement error are fully scrutinized, understood, and to the extent possible, minimized. For morphometric data, measurement error is often evaluated from descriptive statistics that find ratios of subject or within-subject variance to total variance for a set of data comprising repeated measurements on the same research subjects. These descriptive statistics do not typically distinguish between random and systematic components of measurement error, even though the presence of the latter (even in small proportions) can have consequences for downstream biological inferences. Furthermore, merely sampling from subjects that are quite morphologically dissimilar can give the incorrect impression that measurement error (and its negative effects) are unimportant. We argue that a formal hypothesis-testing framework for measurement error in morphometric data is lacking. We propose a suite of new analytical methods and graphical tools that more fully interrogate measurement error, by disentangling its random and systematic components, and evaluating any group-specific systematic effects. Through the analysis of simulated and empirical data sets we demonstrate that our procedures properly parse components of measurement error, and characterize the extent to which they permeate variation in a sample of observations. We further confirm that traditional approaches with repeatability statistics are unable to discern these patterns, improperly assuaging potential concerns. We recommend that the approaches developed here become part of the current analytical paradigm in geometric morphometric studies. The new methods are made available in the RRPP and geomorphR-packages.
期刊介绍:
The aim, scope, and format of Evolutionary Biology will be based on the following principles:
Evolutionary Biology will publish original articles and reviews that address issues and subjects of core concern in evolutionary biology. All papers must make original contributions to our understanding of the evolutionary process.
The journal will remain true to the original intent of the original series to provide a place for broad syntheses in evolutionary biology. Articles will contribute to this goal by defining the direction of current and future research and by building conceptual links between disciplines. In articles presenting an empirical analysis, the results of these analyses must be integrated within a broader evolutionary framework.
Authors are encouraged to submit papers presenting novel conceptual frameworks or major challenges to accepted ideas.
While brevity is encouraged, there is no formal restriction on length for major articles.
The journal aims to keep the time between original submission and appearance online to within four months and will encourage authors to revise rapidly once a paper has been submitted and deemed acceptable.