{"title":"On the cross-product conjecture for the number of linear extensions","authors":"Swee Hong Chan, Igor Pak, Greta Panova","doi":"10.4153/s0008414x24000087","DOIUrl":null,"url":null,"abstract":"<p>We prove a weak version of the <span>cross-product conjecture</span>: <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\textrm {F}(k+1,\\ell ) \\hskip .06cm \\textrm {F}(k,\\ell +1) \\ge (\\frac 12+\\varepsilon ) \\hskip .06cm \\textrm {F}(k,\\ell ) \\hskip .06cm \\textrm {F}(k+1,\\ell +1)$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\textrm {F}(k,\\ell )$</span></span></img></span></span> is the number of linear extensions for which the values at fixed elements <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$x,y,z$</span></span></img></span></span> are <span>k</span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\ell $</span></span></img></span></span> apart, respectively, and where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240209164228069-0556:S0008414X24000087:S0008414X24000087_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\varepsilon>0$</span></span></img></span></span> depends on the poset. We also prove the converse inequality and disprove the <span>generalized cross-product conjecture</span>. The proofs use geometric inequalities for mixed volumes and combinatorics of words.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We prove a weak version of the cross-product conjecture: $\textrm {F}(k+1,\ell ) \hskip .06cm \textrm {F}(k,\ell +1) \ge (\frac 12+\varepsilon ) \hskip .06cm \textrm {F}(k,\ell ) \hskip .06cm \textrm {F}(k+1,\ell +1)$, where $\textrm {F}(k,\ell )$ is the number of linear extensions for which the values at fixed elements $x,y,z$ are k and $\ell $ apart, respectively, and where $\varepsilon>0$ depends on the poset. We also prove the converse inequality and disprove the generalized cross-product conjecture. The proofs use geometric inequalities for mixed volumes and combinatorics of words.