On the correspondence between periodic solutions of differential and dynamic equations on periodic time scales

Pub Date : 2024-02-08 DOI:10.1515/gmj-2024-2003
Viktoriia Tsan, Oleksandr Stanzhytskyi, Olha Martynyuk
{"title":"On the correspondence between periodic solutions of differential and dynamic equations on periodic time scales","authors":"Viktoriia Tsan, Oleksandr Stanzhytskyi, Olha Martynyuk","doi":"10.1515/gmj-2024-2003","DOIUrl":null,"url":null,"abstract":"This paper studies the relationship between the existence of periodic solutions of systems of dynamic equations on time scales and their corresponding systems of differential equations. We have established that, for a sufficiently small graininess function, if a dynamic equation on a time scale has an asymptotically stable periodic solution, then the corresponding differential equation will also have a periodic solution. A converse result has also been obtained, where the existence of a periodic solution of a differential equation implies the existence of a corresponding solution on time scales, provided that the graininess function is sufficiently small.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the relationship between the existence of periodic solutions of systems of dynamic equations on time scales and their corresponding systems of differential equations. We have established that, for a sufficiently small graininess function, if a dynamic equation on a time scale has an asymptotically stable periodic solution, then the corresponding differential equation will also have a periodic solution. A converse result has also been obtained, where the existence of a periodic solution of a differential equation implies the existence of a corresponding solution on time scales, provided that the graininess function is sufficiently small.
分享
查看原文
论微分方程周期解与动态方程周期解在周期时间尺度上的对应关系
本文研究了时间尺度上动态方程系统的周期解的存在与其相应的微分方程系统之间的关系。我们已经确定,对于足够小的粒度函数,如果时间尺度上的动态方程有一个渐近稳定的周期解,那么相应的微分方程也会有一个周期解。我们还得到了一个相反的结果,即只要粒度函数足够小,微分方程周期解的存在就意味着时间尺度上相应解的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信