{"title":"On Complete Convergence of Moments in Exact Asymptotics under Normal Approximation","authors":"L. V. Rozovsky","doi":"10.1137/s0040585x97t991660","DOIUrl":null,"url":null,"abstract":"Theory of Probability &Its Applications, Volume 68, Issue 4, Page 622-629, February 2024. <br/> For the sums of the form $\\overline I_s(\\varepsilon) = \\sum_{n\\geqslant 1} n^{s-r/2}\\mathbf{E}|S_n|^r\\,\\mathbf I[|S_n|\\geqslant \\varepsilon\\,n^\\gamma]$, where $S_n = X_1 +\\dots + X_n$, $X_n$, $n\\geqslant 1$, is a sequence of independent and identically distributed random variables (r.v.'s) $s+1 \\geqslant 0$, $r\\geqslant 0$, $\\gamma>1/2$, and $\\varepsilon>0$, new results on their behavior are provided. As an example, we obtain the following generalization of Heyde's result [J. Appl. Probab., 12 (1975), pp. 173--175]: for any $r\\geqslant 0$, $\\lim_{\\varepsilon\\searrow 0}\\varepsilon^{2}\\sum_{n\\geqslant 1} n^{-r/2} \\mathbf{E}|S_n|^r\\,\\mathbf I[|S_n|\\geqslant \\varepsilon\\, n] =\\mathbf{E} |\\xi|^{r+2}$ if and only if $\\mathbf{E} X=0$ and $\\mathbf{E} X^2=1$, and also $\\mathbf{E}|X|^{2+r/2}<\\infty$ if $r < 4$, $\\mathbf{E}|X|^r<\\infty$ if $r>4$, and $\\mathbf{E} X^4 \\ln{(1+|X|)}<\\infty$ if $r=4$. Here, $\\xi$ is a standard Gaussian r.v.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":"20 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991660","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Theory of Probability &Its Applications, Volume 68, Issue 4, Page 622-629, February 2024. For the sums of the form $\overline I_s(\varepsilon) = \sum_{n\geqslant 1} n^{s-r/2}\mathbf{E}|S_n|^r\,\mathbf I[|S_n|\geqslant \varepsilon\,n^\gamma]$, where $S_n = X_1 +\dots + X_n$, $X_n$, $n\geqslant 1$, is a sequence of independent and identically distributed random variables (r.v.'s) $s+1 \geqslant 0$, $r\geqslant 0$, $\gamma>1/2$, and $\varepsilon>0$, new results on their behavior are provided. As an example, we obtain the following generalization of Heyde's result [J. Appl. Probab., 12 (1975), pp. 173--175]: for any $r\geqslant 0$, $\lim_{\varepsilon\searrow 0}\varepsilon^{2}\sum_{n\geqslant 1} n^{-r/2} \mathbf{E}|S_n|^r\,\mathbf I[|S_n|\geqslant \varepsilon\, n] =\mathbf{E} |\xi|^{r+2}$ if and only if $\mathbf{E} X=0$ and $\mathbf{E} X^2=1$, and also $\mathbf{E}|X|^{2+r/2}<\infty$ if $r < 4$, $\mathbf{E}|X|^r<\infty$ if $r>4$, and $\mathbf{E} X^4 \ln{(1+|X|)}<\infty$ if $r=4$. Here, $\xi$ is a standard Gaussian r.v.
期刊介绍:
Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.