{"title":"Connecting Anti-integrability to Attractors for Three-Dimensional Quadratic Diffeomorphisms","authors":"Amanda E. Hampton, James D. Meiss","doi":"10.1137/23m1571897","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 616-640, March 2024. <br/> Abstract. We previously showed that three-dimensional quadratic diffeomorphisms have anti-integrable (AI) limits that correspond to a quadratic correspondence, a pair of one-dimensional maps. At the AI limit the dynamics is conjugate to a full shift on two symbols. Here we consider a more general AI limit, allowing two parameters of the map to go to infinity. We prove the existence of AI states for each symbol sequence for three cases of the quadratic correspondence: parabolas, ellipses, and hyperbolas. A contraction argument gives parameter domains such that this is a bijection, but the correspondence also is observed to apply more generally. We show that orbits of the original map can be obtained by numerical continuation for a volume-contracting case. These results show that periodic AI states evolve into the observed periodic attractors of the diffeomorphism. We also continue a periodic AI state with a symbol sequence chosen so that it continues to an orbit resembling a chaotic attractor that is a 3D version of the classical 2D Hénon attractor.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1571897","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 616-640, March 2024. Abstract. We previously showed that three-dimensional quadratic diffeomorphisms have anti-integrable (AI) limits that correspond to a quadratic correspondence, a pair of one-dimensional maps. At the AI limit the dynamics is conjugate to a full shift on two symbols. Here we consider a more general AI limit, allowing two parameters of the map to go to infinity. We prove the existence of AI states for each symbol sequence for three cases of the quadratic correspondence: parabolas, ellipses, and hyperbolas. A contraction argument gives parameter domains such that this is a bijection, but the correspondence also is observed to apply more generally. We show that orbits of the original map can be obtained by numerical continuation for a volume-contracting case. These results show that periodic AI states evolve into the observed periodic attractors of the diffeomorphism. We also continue a periodic AI state with a symbol sequence chosen so that it continues to an orbit resembling a chaotic attractor that is a 3D version of the classical 2D Hénon attractor.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.