On the failure of the bootstrap for Chatterjee's rank correlation

IF 2.4 2区 数学 Q2 BIOLOGY
Biometrika Pub Date : 2024-02-04 DOI:10.1093/biomet/asae004
Zhexiao Lin, Fang Han
{"title":"On the failure of the bootstrap for Chatterjee's rank correlation","authors":"Zhexiao Lin, Fang Han","doi":"10.1093/biomet/asae004","DOIUrl":null,"url":null,"abstract":"Summary While researchers commonly use the bootstrap to quantify the uncertainty of an estimator, it has been noticed that the standard bootstrap, in general, does not work for Chatterjee's rank correlation. In this paper, we provide proof of this issue under an additional independence assumption, and complement our theory with simulation evidence for general settings. Chatterjee's rank correlation thus falls into a category of statistics that are asymptotically normal but bootstrap inconsistent. Valid inferential methods in this case are Chatterjee's original proposal for testing independence and Lin & Han (2022) 's analytic asymptotic variance estimator for more general purposes.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asae004","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Summary While researchers commonly use the bootstrap to quantify the uncertainty of an estimator, it has been noticed that the standard bootstrap, in general, does not work for Chatterjee's rank correlation. In this paper, we provide proof of this issue under an additional independence assumption, and complement our theory with simulation evidence for general settings. Chatterjee's rank correlation thus falls into a category of statistics that are asymptotically normal but bootstrap inconsistent. Valid inferential methods in this case are Chatterjee's original proposal for testing independence and Lin & Han (2022) 's analytic asymptotic variance estimator for more general purposes.
关于查特吉秩相关自举法的失败
摘要 虽然研究人员通常使用引导法来量化估计器的不确定性,但人们注意到标准引导法一般不适用于查特吉秩相关。在本文中,我们在额外的独立性假设下证明了这一问题,并用一般情况下的模拟证据补充了我们的理论。因此,查特吉秩相关属于渐近正态但自举不一致的统计类别。在这种情况下,有效的推论方法是 Chatterjee 最初提出的用于检验独立性的方法,以及 Lin & Han (2022) 用于更一般目的的解析渐近方差估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信