{"title":"Regularity results for classes of Hilbert C*-modules with respect to special bounded modular functionals","authors":"Michael Frank","doi":"10.1007/s43034-024-00320-5","DOIUrl":null,"url":null,"abstract":"<div><p>Considering the deeper reasons of the appearance of a remarkable counterexample by Kaad and Skeide (J Operat Theory 89(2):343–348, 2023) we consider situations in which two Hilbert C*-modules <span>\\(M \\subset N\\)</span> with <span>\\(M^\\bot = \\{ 0 \\}\\)</span> over a fixed C*-algebra <i>A</i> of coefficients cannot be separated by a non-trivial bounded <i>A</i>-linear functional <span>\\(r_0: N \\rightarrow A\\)</span> vanishing on <i>M</i>. In other words, the uniqueness of extensions of the zero functional from <i>M</i> to <i>N</i> is focussed. We show this uniqueness of extension for any such pairs of Hilbert C*-modules over W*-algebras, over monotone complete C*-algebras and over compact C*-algebras. Moreover, uniqueness of extension takes place also for any one-sided maximal modular ideal of any C*-algebra. Such a non-zero separating bounded <i>A</i>-linear functional <span>\\(r_0\\)</span> exist for a given pair of full Hilbert C*-modules <span>\\(M \\subseteq N\\)</span> over a given C*-algebra <i>A</i> iff there exists a bounded <i>A</i>-linear non-adjointable operator <span>\\(T_0: N \\rightarrow N\\)</span>, such that the kernel of <span>\\(T_0\\)</span> is not biorthogonally closed w.r.t. <i>N</i> and contains <i>M</i>. This is a new perspective on properties of bounded modular operators that might appear in Hilbert C*-module theory. By the way, we find a correct proof of Lemma 2.4 of Frank (Int J Math 13:1–19, 2002) in the case of monotone complete and compact C*-algebras, but find it not valid in certain particular cases.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43034-024-00320-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00320-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Considering the deeper reasons of the appearance of a remarkable counterexample by Kaad and Skeide (J Operat Theory 89(2):343–348, 2023) we consider situations in which two Hilbert C*-modules \(M \subset N\) with \(M^\bot = \{ 0 \}\) over a fixed C*-algebra A of coefficients cannot be separated by a non-trivial bounded A-linear functional \(r_0: N \rightarrow A\) vanishing on M. In other words, the uniqueness of extensions of the zero functional from M to N is focussed. We show this uniqueness of extension for any such pairs of Hilbert C*-modules over W*-algebras, over monotone complete C*-algebras and over compact C*-algebras. Moreover, uniqueness of extension takes place also for any one-sided maximal modular ideal of any C*-algebra. Such a non-zero separating bounded A-linear functional \(r_0\) exist for a given pair of full Hilbert C*-modules \(M \subseteq N\) over a given C*-algebra A iff there exists a bounded A-linear non-adjointable operator \(T_0: N \rightarrow N\), such that the kernel of \(T_0\) is not biorthogonally closed w.r.t. N and contains M. This is a new perspective on properties of bounded modular operators that might appear in Hilbert C*-module theory. By the way, we find a correct proof of Lemma 2.4 of Frank (Int J Math 13:1–19, 2002) in the case of monotone complete and compact C*-algebras, but find it not valid in certain particular cases.
期刊介绍:
Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group.
Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory.
Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.