Yiqin Lin, Zhenming Kang, Changsheng Su, Shunyuan Li, Wenqin Xie
{"title":"Extracellular vesicles containing upregulated HSP70 from heat shock pretreated human umbilical cord mesenchymal stem cells ameliorates sleep deprivation induced anxiety-like behavior and cognitive impairment in mice","authors":"Yiqin Lin, Zhenming Kang, Changsheng Su, Shunyuan Li, Wenqin Xie","doi":"10.1016/j.omtm.2024.101207","DOIUrl":null,"url":null,"abstract":"<p>The aim of this research was to explore the therapeutic capabilities of extracellular vehicles (EVs) derived from human umbilical cord mesenchymal stem cells (hUC-MSCs) that had been subjected to heat shock pretreatment, in treating psychiatric disorders induced by sleep deprivation in mice. The EVs were isolated and characterized, while Western blotting was utilized to assess the expression of exosomal markers and heat shock protein 70 (HSP70). To evaluate the impact of EV treatment on anxiety-like behavior and cognitive impairment in sleep-deprived (SD) mice, open field test, plus maze test and Y-maze task were conducted. Heat shock pretreatment significantly increased the expression of HSP70 in EVs. Administration of EVs from heat shock pretreated hUC-MSCs improved anxiety-like behavior and cognitive function in sleep-deprived mice. Furthermore, EV treatment promoted synaptic protein expression, HSP70 expression and inhibited neuroinflammation in the hippocampus of SD mice. Western blotting analysis also revealed that EV treatment reduced the levels of TLR4 and p65 in the hippocampus. EVs from heat shock-pretreated hUC-MSCs have therapeutic potential for sleep deprivation-induced psychiatric disorders by regulating neuroinflammation and synaptic function in mice.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy-Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2024.101207","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this research was to explore the therapeutic capabilities of extracellular vehicles (EVs) derived from human umbilical cord mesenchymal stem cells (hUC-MSCs) that had been subjected to heat shock pretreatment, in treating psychiatric disorders induced by sleep deprivation in mice. The EVs were isolated and characterized, while Western blotting was utilized to assess the expression of exosomal markers and heat shock protein 70 (HSP70). To evaluate the impact of EV treatment on anxiety-like behavior and cognitive impairment in sleep-deprived (SD) mice, open field test, plus maze test and Y-maze task were conducted. Heat shock pretreatment significantly increased the expression of HSP70 in EVs. Administration of EVs from heat shock pretreated hUC-MSCs improved anxiety-like behavior and cognitive function in sleep-deprived mice. Furthermore, EV treatment promoted synaptic protein expression, HSP70 expression and inhibited neuroinflammation in the hippocampus of SD mice. Western blotting analysis also revealed that EV treatment reduced the levels of TLR4 and p65 in the hippocampus. EVs from heat shock-pretreated hUC-MSCs have therapeutic potential for sleep deprivation-induced psychiatric disorders by regulating neuroinflammation and synaptic function in mice.
期刊介绍:
The aim of Molecular Therapy—Methods & Clinical Development is to build upon the success of Molecular Therapy in publishing important peer-reviewed methods and procedures, as well as translational advances in the broad array of fields under the molecular therapy umbrella.
Topics of particular interest within the journal''s scope include:
Gene vector engineering and production,
Methods for targeted genome editing and engineering,
Methods and technology development for cell reprogramming and directed differentiation of pluripotent cells,
Methods for gene and cell vector delivery,
Development of biomaterials and nanoparticles for applications in gene and cell therapy and regenerative medicine,
Analysis of gene and cell vector biodistribution and tracking,
Pharmacology/toxicology studies of new and next-generation vectors,
Methods for cell isolation, engineering, culture, expansion, and transplantation,
Cell processing, storage, and banking for therapeutic application,
Preclinical and QC/QA assay development,
Translational and clinical scale-up and Good Manufacturing procedures and process development,
Clinical protocol development,
Computational and bioinformatic methods for analysis, modeling, or visualization of biological data,
Negotiating the regulatory approval process and obtaining such approval for clinical trials.