Lipschitz continuity of the dilation of Bloch functions on the unit ball of a Hilbert space and applications

IF 1.2 3区 数学 Q1 MATHEMATICS
Alejandro Miralles
{"title":"Lipschitz continuity of the dilation of Bloch functions on the unit ball of a Hilbert space and applications","authors":"Alejandro Miralles","doi":"10.1007/s43034-024-00317-0","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(B_E\\)</span> be the open unit ball of a complex finite- or infinite-dimensional Hilbert space. If <i>f</i> belongs to the space <span>\\(\\mathcal {B}(B_E)\\)</span> of Bloch functions on <span>\\(B_E\\)</span>, we prove that the dilation map given by <span>\\(x \\mapsto (1-\\Vert x\\Vert ^2) \\mathcal {R}f(x)\\)</span> for <span>\\(x \\in B_E\\)</span>, where <span>\\(\\mathcal {R}f\\)</span> denotes the radial derivative of <i>f</i>, is Lipschitz continuous with respect to the pseudohyperbolic distance <span>\\(\\rho _E\\)</span> in <span>\\(B_E\\)</span>, which extends to the finite- and infinite-dimensional setting the result given for the classical Bloch space <span>\\(\\mathcal {B}\\)</span>. To provide this result, we will need to prove that <span>\\(\\rho _E(zx,zy) \\le |z| \\rho _E(x,y)\\)</span> for <span>\\(x,y \\in B_E\\)</span> under some conditions on <span>\\(z \\in \\mathbb {C}\\)</span>. Lipschitz continuity of <span>\\(x \\mapsto (1-\\Vert x\\Vert ^2) \\mathcal {R}f(x)\\)</span> will yield some applications on interpolating sequences for <span>\\(\\mathcal {B}(B_E)\\)</span> which also extends classical results from <span>\\(\\mathcal {B}\\)</span> to <span>\\(\\mathcal {B}(B_E)\\)</span>. Indeed, we show that it is necessary for a sequence in <span>\\(B_E\\)</span> to be separated to be interpolating for <span>\\(\\mathcal {B}(B_E)\\)</span> and we also prove that any interpolating sequence for <span>\\(\\mathcal {B}(B_E)\\)</span> can be slightly perturbed and it remains interpolating.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43034-024-00317-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00317-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(B_E\) be the open unit ball of a complex finite- or infinite-dimensional Hilbert space. If f belongs to the space \(\mathcal {B}(B_E)\) of Bloch functions on \(B_E\), we prove that the dilation map given by \(x \mapsto (1-\Vert x\Vert ^2) \mathcal {R}f(x)\) for \(x \in B_E\), where \(\mathcal {R}f\) denotes the radial derivative of f, is Lipschitz continuous with respect to the pseudohyperbolic distance \(\rho _E\) in \(B_E\), which extends to the finite- and infinite-dimensional setting the result given for the classical Bloch space \(\mathcal {B}\). To provide this result, we will need to prove that \(\rho _E(zx,zy) \le |z| \rho _E(x,y)\) for \(x,y \in B_E\) under some conditions on \(z \in \mathbb {C}\). Lipschitz continuity of \(x \mapsto (1-\Vert x\Vert ^2) \mathcal {R}f(x)\) will yield some applications on interpolating sequences for \(\mathcal {B}(B_E)\) which also extends classical results from \(\mathcal {B}\) to \(\mathcal {B}(B_E)\). Indeed, we show that it is necessary for a sequence in \(B_E\) to be separated to be interpolating for \(\mathcal {B}(B_E)\) and we also prove that any interpolating sequence for \(\mathcal {B}(B_E)\) can be slightly perturbed and it remains interpolating.

希尔伯特空间单位球上布洛赫函数扩张的 Lipschitz 连续性及其应用
让 \(B_E\) 是复有限维或无限维希尔伯特空间的开放单位球。如果f属于布洛赫函数在\(B_E\)上的空间\(mathcal {B}(B_E)\), 我们证明对于\(x \in B_E\), 由\(x \mapsto (1-\Vert x\Vert ^2) \mathcal {R}f(x)\) 给出的扩张映射,其中\(\mathcal {R}f\)表示f的径向导数、是关于 \(B_E\) 中的伪双曲距离 \(\rho _E\) 的 Lipschitz 连续的,这就把经典布洛赫空间 \(\mathcal {B}\) 的结果扩展到了有限维和无限维。为了提供这个结果,我们需要证明对于 B_E\ 中的\(x,y),在\(z \ in \mathbb {C}\)的某些条件下,\(\rho _E(zx,zy) \le |z| \rho _E(x,y)\) 。x (mapsto (1-\Vert x\Vert ^2) \mathcal {R}f(x)\) 的 Lipschitz continuity 将产生一些关于 \(\mathcal {B}(B_E)\) 插值序列的应用,这也将\(\mathcal {B}\) 的经典结果扩展到了\(\mathcal {B}(B_E)\) 。事实上,我们证明了在\(B_E\)中的序列必须是分离的才能对\(\mathcal {B}(B_E)\) 进行内插,我们还证明了任何对\(\mathcal {B}(B_E)\) 进行内插的序列都可以被轻微扰动而保持内插。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信